cutlass/include/cutlass/epilogue/thread/linear_combination_bias_elementwise.h
ANIKET SHIVAM d572cc1aab
CUTLASS 3.1 (#915)
Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-04-14 23:19:34 -04:00

271 lines
8.6 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Functor performing linear combination operations used by epilogues.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/array.h"
#include "cutlass/functional.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/epilogue/thread/scale_type.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace epilogue {
namespace thread {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// This base class is meant to define the concept required of the
/// EpilogueWithBroadcast::OutputOp
template <
typename ElementC_,
typename ElementAccumulator_,
typename ElementCompute_,
typename ElementZ_,
typename ElementT_,
int ElementsPerAccess,
typename ElementwiseOp_ = Identity<ElementCompute_>,
typename BinaryOp_ = plus<ElementCompute_>,
bool StoreT_ = true,
typename ElementVector_ = ElementC_
>
class LinearCombinationBiasElementwise {
public:
using ElementOutput = ElementC_;
using ElementC = ElementC_;
using ElementAccumulator = ElementAccumulator_;
using ElementCompute = ElementCompute_;
using ElementZ = ElementZ_;
using ElementT = ElementT_;
using ElementVector = ElementVector_;
static int const kElementsPerAccess = ElementsPerAccess;
static int const kCount = kElementsPerAccess;
using ElementwiseOp = ElementwiseOp_;
using BinaryOp = BinaryOp_;
// Indicates that this epilogue applies only one binary operation
static bool const kIsSingleSource = true;
using FragmentAccumulator = Array<ElementAccumulator, kElementsPerAccess>;
using FragmentCompute = Array<ElementCompute, kElementsPerAccess>;
using FragmentC = Array<ElementOutput, kElementsPerAccess>;
using FragmentZ = Array<ElementZ, kElementsPerAccess>;
using FragmentT = Array<ElementT, kElementsPerAccess>;
// Definitions needed for collective epilogue
using FragmentSource = FragmentC;
using FragmentOutput = FragmentZ;
using ElementBias = ElementVector;
using FragmentBias = FragmentCompute;
using ActivationFunctor = ElementwiseOp;
static const ScaleType::Kind kScale = ScaleType::Default;
static bool const kIsHeavy = ElementwiseOp::kIsHeavy;
/// If true, the 'Z' tensor is stored
static bool const kStoreZ = true;
/// If true, the 'T' tensor is stored
static bool const kStoreT = StoreT_;
/// Host-constructable parameters structure
struct Params {
ElementCompute alpha; ///< scales accumulators
ElementCompute beta; ///< scales source tensor
ElementCompute const *alpha_ptr; ///< pointer to accumulator scalar - if not null, loads it from memory
ElementCompute const *beta_ptr; ///< pointer to source scalar - if not null, loads it from memory
//
// Methods
//
CUTLASS_HOST_DEVICE
Params():
alpha(ElementCompute(1)),
beta(ElementCompute(0)),
alpha_ptr(nullptr),
beta_ptr(nullptr) { }
CUTLASS_HOST_DEVICE
Params(
ElementCompute alpha,
ElementCompute beta
): alpha(alpha), beta(beta), alpha_ptr(nullptr), beta_ptr(nullptr) {
}
CUTLASS_HOST_DEVICE
Params(
ElementCompute alpha
): alpha(alpha), beta(0), alpha_ptr(nullptr), beta_ptr(nullptr) {
}
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr,
ElementCompute const *beta_ptr
): alpha(0), beta(0), alpha_ptr(alpha_ptr), beta_ptr(beta_ptr) {
}
CUTLASS_HOST_DEVICE
Params(
ElementCompute const *alpha_ptr
): alpha(0), beta(0), alpha_ptr(alpha_ptr), beta_ptr(nullptr) {
}
};
private:
//
// Data members
//
ElementCompute alpha_;
ElementCompute beta_;
bool skip_elementwise_;
public:
//
// Methods
//
/// Constructor from Params
CUTLASS_HOST_DEVICE
LinearCombinationBiasElementwise(Params const &params) {
alpha_ = (params.alpha_ptr ? *params.alpha_ptr : params.alpha);
beta_ = (params.beta_ptr ? *params.beta_ptr : params.beta);
skip_elementwise_ = false;
}
/// Returns true if source is needed
CUTLASS_HOST_DEVICE
bool is_source_needed() const {
return beta_ != ElementCompute(0);
}
/// Functionally required for serial reduction in the epilogue
CUTLASS_HOST_DEVICE
void set_k_partition(int k_partition, int k_partition_count) {
if (k_partition) {
beta_ = ElementCompute(1);
}
if (k_partition != k_partition_count - 1) {
skip_elementwise_ = true;
}
}
/// Applies the operation when is_source_needed() is true
CUTLASS_HOST_DEVICE
void operator()(
FragmentZ &frag_Z,
FragmentT &frag_T,
FragmentAccumulator const &AB,
FragmentC const &frag_C,
FragmentCompute const &V) const {
ElementwiseOp elementwise_op;
BinaryOp binary_op;
FragmentCompute tmp_Accum = NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
FragmentCompute tmp_C = NumericArrayConverter<ElementCompute, ElementC, kElementsPerAccess>()(frag_C);
FragmentCompute result_Z;
FragmentCompute result_T;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kElementsPerAccess; ++i) {
ElementCompute z = binary_op(alpha_ * tmp_Accum[i] + beta_ * tmp_C[i], V[i]);
result_T[i] = z;
result_Z[i] = skip_elementwise_ ? z : elementwise_op(z);
}
NumericArrayConverter<ElementZ, ElementCompute, kElementsPerAccess> convert_z;
frag_Z = convert_z(result_Z);
NumericArrayConverter<ElementT, ElementCompute, kElementsPerAccess> convert_t;
frag_T = convert_t(result_T);
}
/// Applies the operation when is_source_needed() is false
CUTLASS_HOST_DEVICE
void operator()(
FragmentZ &frag_Z,
FragmentT &frag_T,
FragmentAccumulator const &AB,
FragmentCompute const &V) const {
ElementwiseOp elementwise_op;
BinaryOp binary_op;
FragmentCompute tmp_Accum = NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
FragmentCompute result_Z;
FragmentCompute result_T;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kElementsPerAccess; ++i) {
ElementCompute z = binary_op(alpha_ * tmp_Accum[i], V[i]);
result_T[i] = z;
result_Z[i] = skip_elementwise_ ? z : elementwise_op(z);
}
NumericArrayConverter<ElementZ, ElementCompute, kElementsPerAccess> convert_z;
frag_Z = convert_z(result_Z);
NumericArrayConverter<ElementT, ElementCompute, kElementsPerAccess> convert_t;
frag_T = convert_t(result_T);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace epilogue
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////