219 lines
7.1 KiB
C++
219 lines
7.1 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/aligned_buffer.h"
|
|
#include "cutlass/arch/memory.h"
|
|
#include "cutlass/array.h"
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/gemm/gemm.h"
|
|
#include "cutlass/matrix_shape.h"
|
|
#include "cutlass/numeric_types.h"
|
|
|
|
#include "cutlass/gemm/threadblock/mma_base.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace gemm {
|
|
namespace threadblock {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
|
/// instructions.
|
|
template <
|
|
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
|
typename Shape_,
|
|
/// Policy describing tuning details (concept: MmaPolicy)
|
|
typename Policy_,
|
|
/// Number of stages,
|
|
int Stages,
|
|
/// Used for partial specialization
|
|
typename Enable = bool>
|
|
class DualMmaBase {
|
|
public:
|
|
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
|
using Shape = Shape_;
|
|
|
|
///< Policy describing tuning details
|
|
using Policy = Policy_;
|
|
|
|
//
|
|
// Dependent types
|
|
//
|
|
|
|
/// Warp-level Mma
|
|
using Operator = typename Policy::Operator;
|
|
|
|
/// Shape describing the overall GEMM computed from shared memory
|
|
/// by each warp.
|
|
using WarpGemm = typename Policy::Operator::Shape;
|
|
|
|
/// Shape describing the number of warps filling the CTA
|
|
using WarpCount = GemmShape<Shape::kM / WarpGemm::kM,
|
|
Shape::kN / WarpGemm::kN,
|
|
Shape::kK / WarpGemm::kK>;
|
|
|
|
/// Number of warp-level GEMM oeprations
|
|
static int const kWarpGemmIterations =
|
|
(WarpGemm::kK / Operator::Policy::MmaShape::kK);
|
|
|
|
/// Number of stages
|
|
static int const kStages = Stages;
|
|
|
|
/// Tensor reference to the A operand
|
|
using TensorRefA = TensorRef<typename Operator::ElementA, typename Operator::LayoutA>;
|
|
|
|
/// Tensor reference to the B operand
|
|
using TensorRefB = TensorRef<typename Operator::ElementB, typename Operator::LayoutB>;
|
|
|
|
static_assert(kWarpGemmIterations > 1,
|
|
"The pipelined structure requires at least two warp-level "
|
|
"GEMM operations.");
|
|
|
|
static_assert((kWarpGemmIterations % 2) == 0,
|
|
"Inner loop iteration must be an even number.");
|
|
|
|
//
|
|
// Nested structs
|
|
//
|
|
|
|
/// Shared storage object needed by threadblock-scoped GEMM
|
|
class SharedStorage {
|
|
public:
|
|
//
|
|
// Type definitions
|
|
//
|
|
|
|
/// Shape of the A matrix operand in shared memory
|
|
using ShapeA = MatrixShape<Shape::kM + Policy::SmemPaddingA::kRow,
|
|
Shape::kK * kStages +
|
|
Policy::SmemPaddingA::kColumn>;
|
|
|
|
/// Shape of the B matrix operand in shared memory
|
|
using ShapeB =
|
|
MatrixShape<Shape::kK * kStages + Policy::SmemPaddingB::kRow,
|
|
Shape::kN + Policy::SmemPaddingB::kColumn>;
|
|
|
|
public:
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
/// Buffer for A operand
|
|
AlignedBuffer<typename Operator::ElementA, ShapeA::kCount> operand_A;
|
|
|
|
/// Buffer for B operand
|
|
AlignedBuffer<typename Operator::ElementB, ShapeB::kCount> operand_B0;
|
|
AlignedBuffer<typename Operator::ElementB, ShapeB::kCount> operand_B1;
|
|
|
|
public:
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Returns a layout object for the A matrix
|
|
CUTLASS_DEVICE
|
|
static typename Operator::LayoutA LayoutA() {
|
|
return Operator::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn});
|
|
}
|
|
|
|
/// Returns a layout object for the B matrix
|
|
CUTLASS_HOST_DEVICE
|
|
static typename Operator::LayoutB LayoutB() {
|
|
return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn});
|
|
}
|
|
|
|
/// Returns a TensorRef to the A operand
|
|
CUTLASS_HOST_DEVICE
|
|
TensorRefA operand_A_ref() {
|
|
return TensorRefA{operand_A.data(), LayoutA()};
|
|
}
|
|
|
|
/// Returns a TensorRef to the B operand
|
|
CUTLASS_HOST_DEVICE
|
|
TensorRefB operand_B0_ref() {
|
|
return TensorRefB{operand_B0.data(), LayoutB()};
|
|
}
|
|
CUTLASS_HOST_DEVICE
|
|
TensorRefB operand_B1_ref() {
|
|
return TensorRefB{operand_B1.data(), LayoutB()};
|
|
}
|
|
};
|
|
|
|
protected:
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
/// Iterator to load a warp-scoped tile of A operand from shared memory
|
|
typename Operator::IteratorA warp_tile_iterator_A_;
|
|
|
|
/// Iterator to load a warp-scoped tile of B operand from shared memory
|
|
typename Operator::IteratorB warp_tile_iterator_B0_;
|
|
typename Operator::IteratorB warp_tile_iterator_B1_;
|
|
|
|
public:
|
|
|
|
/// Construct from tensor references
|
|
CUTLASS_DEVICE
|
|
DualMmaBase(
|
|
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
|
SharedStorage &shared_storage,
|
|
///< ID within the threadblock
|
|
int thread_idx,
|
|
///< ID of warp
|
|
int warp_idx,
|
|
///< ID of each thread within a warp
|
|
int lane_idx
|
|
):
|
|
warp_tile_iterator_A_(shared_storage.operand_A_ref(), lane_idx),
|
|
warp_tile_iterator_B0_(shared_storage.operand_B0_ref(), lane_idx),
|
|
warp_tile_iterator_B1_(shared_storage.operand_B1_ref(), lane_idx) {
|
|
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace threadblock
|
|
} // namespace gemm
|
|
} // namespace cutlass
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|