204 lines
6.7 KiB
Python
204 lines
6.7 KiB
Python
import pycutlass
|
|
from pycutlass import *
|
|
from pycutlass.test import *
|
|
import unittest
|
|
|
|
from pycutlass.test.gemm_grouped_testbed import TestbedGrouped
|
|
from pycutlass.utils.device import device_cc
|
|
|
|
|
|
@unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.")
|
|
class GemmGroupedSm80(unittest.TestCase):
|
|
def test_SM80_Device_GemmGrouped_f16n_f16t_f32n_tensor_op_f32_128x128x32_64x64x32(self):
|
|
math_inst = MathInstruction(
|
|
instruction_shape=[16, 8, 16], element_a=cutlass.float16,
|
|
element_b=cutlass.float16, element_accumulator=cutlass.float32,
|
|
opcode_class=cutlass.OpClass.TensorOp,
|
|
math_operation=MathOperation.multiply_add
|
|
)
|
|
|
|
tile_description = TileDescription(
|
|
threadblock_shape=[128, 128, 32],
|
|
stages=3, warp_count=[2, 2, 1],
|
|
math_instruction=math_inst
|
|
)
|
|
|
|
A = TensorDescription(
|
|
element=cutlass.float16, layout=cutlass.ColumnMajor,
|
|
alignment=8
|
|
)
|
|
|
|
B = TensorDescription(
|
|
element=cutlass.float16, layout=cutlass.ColumnMajor,
|
|
alignment=8
|
|
)
|
|
|
|
C = TensorDescription(
|
|
element=cutlass.float32, layout=cutlass.ColumnMajor,
|
|
alignment=4
|
|
)
|
|
|
|
element_epilogue = cutlass.float32
|
|
epilogue_functor = LinearCombination(
|
|
C.element, C.alignment,
|
|
math_inst.element_accumulator, element_epilogue)
|
|
swizzling_functor = cutlass.BatchedIdentitySwizzle
|
|
|
|
for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]:
|
|
operation = GemmOperationGrouped(
|
|
80,
|
|
tile_description, A, B, C,
|
|
epilogue_functor, swizzling_functor,
|
|
precompute_mode=precompute_mode
|
|
)
|
|
|
|
testbed = TestbedGrouped(operation=operation)
|
|
|
|
self.assertTrue(testbed.run(24))
|
|
|
|
def test_SM80_Device_GemmGrouped_f64t_f64t_f64n_tensor_op_f64_64x64x16_32x32x16(self):
|
|
math_inst = MathInstruction(
|
|
instruction_shape=[8, 8, 4], element_a=cutlass.float64,
|
|
element_b=cutlass.float64, element_accumulator=cutlass.float64,
|
|
opcode_class=cutlass.OpClass.TensorOp,
|
|
math_operation=MathOperation.multiply_add
|
|
)
|
|
|
|
tile_description = TileDescription(
|
|
threadblock_shape=[64, 64, 16],
|
|
stages=4, warp_count=[2, 2, 1],
|
|
math_instruction=math_inst
|
|
)
|
|
|
|
A = TensorDescription(
|
|
element=cutlass.float64, layout=cutlass.RowMajor,
|
|
alignment=1
|
|
)
|
|
|
|
B = TensorDescription(
|
|
element=cutlass.float64, layout=cutlass.RowMajor,
|
|
alignment=1
|
|
)
|
|
|
|
C = TensorDescription(
|
|
element=cutlass.float64, layout=cutlass.ColumnMajor,
|
|
alignment=1
|
|
)
|
|
|
|
element_epilogue = cutlass.float64
|
|
epilogue_functor = LinearCombination(
|
|
C.element, C.alignment,
|
|
math_inst.element_accumulator, element_epilogue)
|
|
swizzling_functor = cutlass.BatchedIdentitySwizzle
|
|
|
|
for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]:
|
|
operation = GemmOperationGrouped(
|
|
80,
|
|
tile_description, A, B, C,
|
|
epilogue_functor, swizzling_functor,
|
|
precompute_mode=precompute_mode
|
|
)
|
|
|
|
testbed = TestbedGrouped(operation=operation)
|
|
|
|
self.assertTrue(testbed.run(24))
|
|
|
|
def test_SM80_Device_GemmGrouped_f32t_f32t_f32t_simt_f32_128x64x8_64x32x1(self):
|
|
math_inst = MathInstruction(
|
|
instruction_shape=[1, 1, 1], element_a=cutlass.float32,
|
|
element_b=cutlass.float32, element_accumulator=cutlass.float32,
|
|
opcode_class=cutlass.OpClass.Simt,
|
|
math_operation=MathOperation.multiply_add
|
|
)
|
|
|
|
tile_description = TileDescription(
|
|
threadblock_shape=[128, 64, 8],
|
|
stages=4, warp_count=[2, 2, 1],
|
|
math_instruction=math_inst
|
|
)
|
|
|
|
A = TensorDescription(
|
|
element=cutlass.float32, layout=cutlass.RowMajor,
|
|
alignment=1
|
|
)
|
|
|
|
B = TensorDescription(
|
|
element=cutlass.float32, layout=cutlass.RowMajor,
|
|
alignment=1
|
|
)
|
|
|
|
C = TensorDescription(
|
|
element=cutlass.float32, layout=cutlass.RowMajor,
|
|
alignment=1
|
|
)
|
|
|
|
element_epilogue = cutlass.float32
|
|
epilogue_functor = LinearCombination(
|
|
C.element, C.alignment,
|
|
math_inst.element_accumulator, element_epilogue)
|
|
swizzling_functor = cutlass.BatchedIdentitySwizzle
|
|
|
|
for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]:
|
|
operation = GemmOperationGrouped(
|
|
80,
|
|
tile_description, A, B, C,
|
|
epilogue_functor, swizzling_functor,
|
|
precompute_mode=precompute_mode
|
|
)
|
|
|
|
testbed = TestbedGrouped(operation=operation)
|
|
|
|
self.assertTrue(testbed.run(27))
|
|
|
|
def test_SM80_Device_GemmGrouped_f16n_f16t_f32n_tensor_op_f32_128x128x32_64x64x32_cache(self):
|
|
math_inst = MathInstruction(
|
|
instruction_shape=[16, 8, 16], element_a=cutlass.float16,
|
|
element_b=cutlass.float16, element_accumulator=cutlass.float32,
|
|
opcode_class=cutlass.OpClass.TensorOp,
|
|
math_operation=MathOperation.multiply_add
|
|
)
|
|
|
|
tile_description = TileDescription(
|
|
threadblock_shape=[128, 128, 32],
|
|
stages=3, warp_count=[2, 2, 1],
|
|
math_instruction=math_inst
|
|
)
|
|
|
|
A = TensorDescription(
|
|
element=cutlass.float16, layout=cutlass.ColumnMajor,
|
|
alignment=8
|
|
)
|
|
|
|
B = TensorDescription(
|
|
element=cutlass.float16, layout=cutlass.ColumnMajor,
|
|
alignment=8
|
|
)
|
|
|
|
C = TensorDescription(
|
|
element=cutlass.float32, layout=cutlass.ColumnMajor,
|
|
alignment=4
|
|
)
|
|
|
|
element_epilogue = cutlass.float32
|
|
epilogue_functor = LinearCombination(
|
|
C.element, C.alignment,
|
|
math_inst.element_accumulator, element_epilogue)
|
|
swizzling_functor = cutlass.BatchedIdentitySwizzle
|
|
|
|
for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]:
|
|
operation = GemmOperationGrouped(
|
|
80,
|
|
tile_description, A, B, C,
|
|
epilogue_functor, swizzling_functor,
|
|
precompute_mode=precompute_mode
|
|
)
|
|
|
|
testbed = TestbedGrouped(operation=operation)
|
|
|
|
self.assertTrue(testbed.run(5))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pycutlass.get_memory_pool(2**26, 2**26)
|
|
unittest.main()
|