139 lines
6.7 KiB
Python
139 lines
6.7 KiB
Python
#################################################################################################
|
|
#
|
|
# Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# 3. Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
#################################################################################################
|
|
|
|
"""
|
|
Low-level functionality tests for Conv2d operands on SM80
|
|
"""
|
|
from conv2d_test_utils import *
|
|
import cutlass
|
|
import logging
|
|
|
|
|
|
cutlass.set_log_level(logging.WARNING)
|
|
cc = 80
|
|
|
|
@unittest.skipIf(device_cc() != cc, 'Device compute capability is invalid for SM80 tests.')
|
|
class Conv2dSm80(unittest.TestCase):
|
|
"""
|
|
Wrapper class to which tests will be added dynamically in __main__
|
|
"""
|
|
pass
|
|
|
|
conv_problems = get_conv_problems()
|
|
|
|
# Tests for optimized & analytic
|
|
for conv_kind in ["fprop", "wgrad", "dgrad"]:
|
|
# F16, simt
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="simt", threadblock_shape=[128, 128, 8],
|
|
warp_count=[4, 2, 1], stages=2, instruction_shape=[1, 1, 1])
|
|
# F16, tensor op
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=[128, 128, 64],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16])
|
|
# F16, tensor op, analytic iterator
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=[128, 128, 64],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], iterator_algorithm="analytic")
|
|
# F16, tensor op, f32 output
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32,
|
|
opclass="tensor_op", threadblock_shape=[128, 128, 64],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16])
|
|
# F16, tensor op, different tile description
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=[128, 64, 32],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8])
|
|
# F32, simt
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32,
|
|
opclass="simt", threadblock_shape=[128, 128, 8],
|
|
warp_count=[4, 2, 1], stages=4, instruction_shape=[1, 1, 1])
|
|
# Tf32, tensorop
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32,
|
|
opclass="tensor_op", threadblock_shape=[128, 128, 16],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8]
|
|
)
|
|
# Split-K
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=[128, 128, 64],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode="serial",
|
|
split_k_slices=2)
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=[128, 128, 64],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode="parallel",
|
|
split_k_slices=5)
|
|
# Swizzling functor
|
|
add_test(
|
|
Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=[128, 64, 32],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8], swizzle=4)
|
|
|
|
# Tests for few channels and fixed channels
|
|
# F16, tensor op, few channels
|
|
for c, tb, stage, inst in zip([2, 1],
|
|
[[128, 128, 64], [128, 128, 32]],
|
|
[3, 2],
|
|
[[16, 8, 16], [16, 8, 8]]):
|
|
add_test(
|
|
Conv2dSm80, cc, "fprop", conv2d_few_channel_problemsizes(c), cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=tb,
|
|
warp_count=[2, 2, 1], stages=stage, instruction_shape=inst, iterator_algorithm="few_channels"
|
|
)
|
|
# F16, tensor op, fixed channels
|
|
for c in [8, 4, 2]:
|
|
add_test(
|
|
Conv2dSm80, cc, "fprop", conv2d_few_channel_problemsizes(c), cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=[128, 128, 64],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], iterator_algorithm="fixed_channels"
|
|
)
|
|
|
|
# Test activations
|
|
for activation in ["relu", "leaky_relu"]:
|
|
for split_k_mode, split_k_slices in zip(["parallel", "serial", "parallel"], [1, 7, 5]):
|
|
add_test(
|
|
Conv2dSm80, cc, "fprop", conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16,
|
|
opclass="tensor_op", threadblock_shape=[128, 128, 64],
|
|
warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode=split_k_mode,
|
|
split_k_slices=split_k_slices, activation=activation)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|