
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
225 lines
7.1 KiB
C++
225 lines
7.1 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Reference implementation for GEMM in device-side code.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/coord.h"
|
|
#include "cutlass/matrix_traits.h"
|
|
#include "cutlass/tensor_view.h"
|
|
#include "cutlass/gemm/gemm_coord.h"
|
|
|
|
#include "tools/util/reference/device/kernel/gemm.h"
|
|
|
|
namespace cutlass {
|
|
namespace reference {
|
|
namespace device {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
|
|
/// objects.
|
|
///
|
|
/// Explicitly naming types needed by this template can be cumbersome, particularly for the
|
|
/// accumulator type, so a function argument 'initial_accum' is exposed. Passing
|
|
/// AccumulatorType(0) as the last function argument can be easier than naming all template
|
|
/// arguments explicitly.
|
|
template <
|
|
typename TensorRefA,
|
|
typename TensorRefB,
|
|
typename TensorRefC,
|
|
typename ScalarType,
|
|
typename AccumulatorType
|
|
>
|
|
void Gemm(
|
|
gemm::GemmCoord problem_size,
|
|
ScalarType alpha,
|
|
TensorRefA tensor_a,
|
|
TensorRefB tensor_b,
|
|
ScalarType beta,
|
|
TensorRefC tensor_c,
|
|
AccumulatorType initial_accum) {
|
|
|
|
typedef typename TensorRefA::Storage AType;
|
|
typedef typename TensorRefB::Storage BType;
|
|
typedef typename TensorRefC::Storage CType;
|
|
|
|
static_assert(
|
|
TensorRefA::kRank == 2 &&
|
|
TensorRefB::kRank == 2 &&
|
|
TensorRefC::kRank == 2, "Tensors must be of rank 2");
|
|
|
|
// Blocking structure potentially improves performance of reference implementation
|
|
// with a minor increase in complexity.
|
|
//
|
|
// Note, this reference implementation is NOT expected to approach peak performance.
|
|
typedef Shape<1, 4, 4> OutputTile;
|
|
|
|
dim3 block(16, 8);
|
|
dim3 grid(
|
|
(problem_size.m() + block.x * OutputTile::kW - 1) / (block.x * OutputTile::kW),
|
|
(problem_size.n() + block.y * OutputTile::kH - 1) / (block.y * OutputTile::kH)
|
|
);
|
|
|
|
// Launch a GEMM kernel
|
|
kernel::Gemm<
|
|
TensorRefA,
|
|
TensorRefB,
|
|
TensorRefC,
|
|
ScalarType,
|
|
AccumulatorType,
|
|
OutputTile
|
|
><<< grid, block >>>(
|
|
problem_size,
|
|
alpha,
|
|
tensor_a,
|
|
tensor_b,
|
|
beta,
|
|
tensor_c,
|
|
initial_accum
|
|
);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
|
|
/// objects.
|
|
///
|
|
/// This assumes the accumulator type is the same type as the scalars.
|
|
template <
|
|
typename TensorRefA,
|
|
typename TensorRefB,
|
|
typename TensorRefC,
|
|
typename ScalarType
|
|
>
|
|
void Gemm(
|
|
gemm::GemmCoord problem_size,
|
|
ScalarType alpha,
|
|
TensorRefA tensor_a,
|
|
TensorRefB tensor_b,
|
|
ScalarType beta,
|
|
TensorRefC tensor_c) {
|
|
|
|
Gemm(problem_size, alpha, tensor_a, tensor_b, beta, tensor_c, ScalarType(0));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Batched GEMM
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Computes a batch of GEMMs over a set of matrices of common dimension.
|
|
//
|
|
// TensorRefCollection* is a type satisfying the TensorRefCollection concept.
|
|
//
|
|
template <
|
|
typename TensorRefCollectionA,
|
|
typename TensorRefCollectionB,
|
|
typename TensorRefCollectionC,
|
|
typename ScalarType,
|
|
typename AccumulatorType
|
|
>
|
|
void BatchedGemm(
|
|
gemm::GemmCoord problem_size,
|
|
ScalarType alpha,
|
|
TensorRefCollectionA tensor_a,
|
|
TensorRefCollectionB tensor_b,
|
|
ScalarType beta,
|
|
TensorRefCollectionC tensor_c,
|
|
AccumulatorType initial_accum) {
|
|
|
|
typedef typename TensorRefCollectionA::Storage AType;
|
|
typedef typename TensorRefCollectionB::Storage BType;
|
|
typedef typename TensorRefCollectionC::Storage CType;
|
|
|
|
static_assert(
|
|
TensorRefCollectionA::kRank == 2 &&
|
|
TensorRefCollectionB::kRank == 2 &&
|
|
TensorRefCollectionC::kRank == 2, "Tensors must be of rank 2");
|
|
|
|
// Blocking structure potentially improves performance of reference implementation
|
|
// with a minor increase in complexity.
|
|
//
|
|
// Note, this reference implementation is NOT expected to approach peak performance.
|
|
typedef Shape<1, 4, 4> OutputTile;
|
|
|
|
dim3 block(16, 8);
|
|
dim3 grid(
|
|
(problem_size.m() + block.x * OutputTile::kW - 1) / (block.x * OutputTile::kW),
|
|
(problem_size.n() + block.y * OutputTile::kH - 1) / (block.y * OutputTile::kH),
|
|
problem_size.batch()
|
|
);
|
|
|
|
// Launch a GEMM kernel
|
|
kernel::BatchedGemm<
|
|
TensorRefCollectionA,
|
|
TensorRefCollectionB,
|
|
TensorRefCollectionC,
|
|
ScalarType,
|
|
AccumulatorType,
|
|
OutputTile
|
|
><<< grid, block >>>(
|
|
problem_size,
|
|
alpha,
|
|
tensor_a,
|
|
tensor_b,
|
|
beta,
|
|
tensor_c,
|
|
initial_accum
|
|
);
|
|
}
|
|
|
|
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
|
|
/// objects.
|
|
//
|
|
// TensorRefCollection* is a type satisfying the TensorRefCollection concept.
|
|
//
|
|
template <
|
|
typename TensorRefCollectionA,
|
|
typename TensorRefCollectionB,
|
|
typename TensorRefCollectionC,
|
|
typename ScalarType,
|
|
typename AccumulatorType
|
|
>
|
|
void BatchedGemm(
|
|
gemm::GemmCoord problem_size,
|
|
ScalarType alpha,
|
|
TensorRefCollectionA tensor_a,
|
|
TensorRefCollectionB tensor_b,
|
|
ScalarType beta,
|
|
TensorRefCollectionC tensor_c) {
|
|
|
|
BatchedGemm(problem_size, alpha, tensor_a, tensor_b, beta, tensor_c, ScalarType(0));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace host
|
|
} // namespace reference
|
|
} // namespace cutlass
|