cutlass/include/cutlass/gemm/kernel/default_gemm.h
Vijay Thakkar 277bd6e537
CUTLASS 3.0.0 (#786)
* CUTLASS 3.0.0
2023-01-23 20:55:28 -05:00

1061 lines
37 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
Default kernel-level GEMM definitions combine threadblock-scoped matrix multiply-add with
the appropriate threadblock-scoped epilogue.
Note, CUTLASS epilogues universally target row-major outputs. Column-major outputs are
accommodated by exchanging A and B operands and assuming transposed layouts. Partial
specializations here choose 'device::GemmTransposed' to implement this functionality.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/numeric_types.h"
#include "cutlass/arch/wmma.h"
#include "cutlass/epilogue/threadblock/epilogue.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/kernel/gemm.h"
#include "cutlass/gemm/kernel/gemm_pipelined.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
#include "cutlass/gemm/threadblock/default_mma.h"
#include "cutlass/gemm/threadblock/default_mma_core_simt.h"
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
#include "cutlass/layout/permute.h"
#if defined(CUTLASS_ARCH_WMMA_ENABLED)
#include "cutlass/epilogue/threadblock/default_epilogue_wmma_tensor_op.h"
#endif //CUTLASS_ARCH_WMMA_ENABLED
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace kernel {
////////////////////////////////////////////////////////////////////////////////
template <
/// Element type for A matrix operand
typename ElementA_,
/// Layout type for A matrix operand
typename LayoutA_,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB_,
/// Layout type for B matrix operand
typename LayoutB_,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC_,
/// Layout type for C and D matrix operands
typename LayoutC_,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Operator class tag
typename OperatorClass,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear = SharedMemoryClearOption::kNone,
/// Gather operand A by using an index array
bool GatherA = false,
/// Gather operand B by using an index array
bool GatherB = false,
/// Scatter result D by using an index array
bool ScatterD = false,
/// Permute result D
typename PermuteDLayout = layout::NoPermute,
///
typename Enable = void
>
struct DefaultGemm;
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Hopper Architecture
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of A matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear,
/// Gather operand A by using an index array
bool GatherA,
/// Gather operand B by using an index array
bool GatherB,
/// Scatter result D by using an index array
bool ScatterD,
/// Permute result D
typename PermuteDLayout
>
struct DefaultGemm<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementC,
layout::RowMajor, ElementAccumulator, arch::OpClassTensorOp,
arch::Sm90, ThreadblockShape, WarpShape, InstructionShape,
EpilogueOutputOp, ThreadblockSwizzle, Stages, SplitKSerial,
Operator, SharedMemoryClear, GatherA, GatherB, ScatterD, PermuteDLayout> {
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, arch::Sm90,
ThreadblockShape, WarpShape, InstructionShape, Stages,
Operator, false, SharedMemoryClear, GatherA, GatherB>::ThreadblockMma;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
/// Define the epilogue
using Epilogue =
typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape, typename Mma::Operator, kPartitionsK, EpilogueOutputOp,
EpilogueOutputOp::kCount, ScatterD, PermuteDLayout>::Epilogue;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Ampere Architecture
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of A matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Layout type for C and D matrix operand
typename LayoutC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear,
/// Gather operand A by using an index array
bool GatherA,
/// Gather operand B by using an index array
bool GatherB,
/// Scatter result D by using an index array
bool ScatterD,
/// Permute result D
typename PermuteDLayout
>
struct DefaultGemm<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementC,
LayoutC, ElementAccumulator, arch::OpClassTensorOp,
arch::Sm80, ThreadblockShape, WarpShape, InstructionShape,
EpilogueOutputOp, ThreadblockSwizzle, Stages, SplitKSerial,
Operator, SharedMemoryClear, GatherA, GatherB, ScatterD, PermuteDLayout> {
static_assert((platform::is_same<LayoutC, layout::RowMajor>::value
|| platform::is_same<LayoutC, layout::AffineRankN<2>>::value),
"Epilogue in the kernel level must be row major");
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
ElementAccumulator, LayoutC, arch::OpClassTensorOp, arch::Sm80,
ThreadblockShape, WarpShape, InstructionShape, Stages,
Operator, false, SharedMemoryClear, GatherA, GatherB>::ThreadblockMma;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
/// Define the epilogue
using RegularEpilogue =
typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape, typename Mma::Operator, kPartitionsK, EpilogueOutputOp,
EpilogueOutputOp::kCount, ScatterD, PermuteDLayout>::Epilogue;
using Affine2Epilogue =
typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOpAffineRankN<
2, ThreadblockShape, typename Mma::Operator, kPartitionsK, EpilogueOutputOp,
EpilogueOutputOp::kCount>::Epilogue;
using Epilogue = typename platform::conditional<platform::is_same<LayoutC, layout::RowMajor>::value,
RegularEpilogue,
Affine2Epilogue>::type;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Turing Architecture
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// If true, kernel is configured to support serial reduction in the epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear,
/// Gather operand A by using an index array
bool GatherA,
/// Gather operand B by using an index array
bool GatherB,
/// Scatter result D by using an index array
bool ScatterD,
/// Permute result D
typename PermuteDLayout
>
struct DefaultGemm<
ElementA, LayoutA, kAlignmentA,
ElementB, LayoutB, kAlignmentB,
ElementC, layout::RowMajor,
ElementAccumulator,
arch::OpClassTensorOp,
arch::Sm75,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
SplitKSerial,
Operator,
SharedMemoryClear,
GatherA,
GatherB,
ScatterD,
PermuteDLayout
> {
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementAccumulator,
layout::RowMajor,
arch::OpClassTensorOp,
arch::Sm75,
ThreadblockShape,
WarpShape,
InstructionShape,
2,
Operator,
false,
SharedMemoryClear,
GatherA,
GatherB
>::ThreadblockMma;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
/// Define the epilogue
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape,
typename Mma::Operator,
kPartitionsK,
EpilogueOutputOp,
EpilogueOutputOp::kCount,
ScatterD,
PermuteDLayout
>::Epilogue;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Ampere Integer Matrix Multiply Interleaved layout
template <
/// Element type for A matrix operand
typename ElementA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages,
/// Number of Interleaved k
int InterleavedK,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear>
struct DefaultGemm<
ElementA, layout::ColumnMajorInterleaved<InterleavedK>, kAlignmentA,
ElementB, layout::RowMajorInterleaved<InterleavedK>, kAlignmentB, ElementC,
layout::ColumnMajorInterleaved<InterleavedK>, int32_t,
arch::OpClassTensorOp, arch::Sm80, ThreadblockShape, WarpShape,
InstructionShape, EpilogueOutputOp, ThreadblockSwizzle, Stages,
SplitKSerial, Operator, SharedMemoryClear, false, false, false> {
using LayoutA = layout::ColumnMajorInterleaved<InterleavedK>;
using LayoutB = layout::RowMajorInterleaved<InterleavedK>;
using LayoutC = layout::ColumnMajorInterleaved<InterleavedK>;
using ElementAccumulator = int32_t;
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
ElementAccumulator, LayoutC, arch::OpClassTensorOp, arch::Sm80,
ThreadblockShape, WarpShape, InstructionShape, Stages, Operator,
true, SharedMemoryClear>::ThreadblockMma;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
/// Define the epilogue
using Epilogue = typename cutlass::epilogue::threadblock::
DefaultInterleavedEpilogueTensorOp<
ThreadblockShape, typename Mma::Operator, kPartitionsK, EpilogueOutputOp,
64 / sizeof_bits<ElementC>::value, InterleavedK>::Epilogue;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Turing Integer Matrix Multiply Interleaved layout
template <
/// Element type for A matrix operand
typename ElementA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of Interleaved k
int InterleavedK,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear>
struct DefaultGemm<ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
kAlignmentA, ElementB,
layout::RowMajorInterleaved<InterleavedK>, kAlignmentB,
ElementC, layout::ColumnMajorInterleaved<InterleavedK>,
int32_t, arch::OpClassTensorOp, arch::Sm75, ThreadblockShape,
WarpShape, InstructionShape, EpilogueOutputOp,
ThreadblockSwizzle, 2, SplitKSerial, Operator, SharedMemoryClear,
false, false, false> {
using LayoutA = layout::ColumnMajorInterleaved<InterleavedK>;
using LayoutB = layout::RowMajorInterleaved<InterleavedK>;
using LayoutC = layout::ColumnMajorInterleaved<InterleavedK>;
using ElementAccumulator = int32_t;
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, LayoutC,
arch::OpClassTensorOp, arch::Sm75, ThreadblockShape, WarpShape,
InstructionShape, 2, Operator, true>::ThreadblockMma;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
/// Define the epilogue
using Epilogue = typename cutlass::epilogue::threadblock::
DefaultInterleavedEpilogueTensorOp<
ThreadblockShape, typename Mma::Operator, kPartitionsK, EpilogueOutputOp,
64 / sizeof_bits<ElementC>::value, InterleavedK>::Epilogue;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Volta architecture
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// If true, kernel is configured to support serial reduction in the epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear,
/// Gather operand A by using an index array
bool GatherA,
/// Gather operand B by using an index array
bool GatherB,
/// Scatter result D by using an index array
bool ScatterD,
/// Permute result D
typename PermuteDLayout
>
struct DefaultGemm<
ElementA, LayoutA, kAlignmentA,
ElementB, LayoutB, kAlignmentB,
ElementC, layout::RowMajor,
ElementAccumulator,
arch::OpClassTensorOp,
arch::Sm70,
ThreadblockShape,
WarpShape,
GemmShape<8, 8, 4>,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
SplitKSerial,
Operator,
SharedMemoryClear,
GatherA,
GatherB,
ScatterD,
PermuteDLayout
> {
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementAccumulator,
layout::RowMajor,
arch::OpClassTensorOp,
arch::Sm70,
ThreadblockShape,
WarpShape,
GemmShape<8, 8, 4>,
2,
Operator,
false,
SharedMemoryClear,
GatherA,
GatherB
>::ThreadblockMma;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
/// Define the epilogue
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp<
ThreadblockShape,
typename Mma::Operator,
kPartitionsK,
EpilogueOutputOp,
EpilogueOutputOp::kCount,
ScatterD,
PermuteDLayout
>::Epilogue;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for SIMT
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of A matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Layout type for C and D matrix operand
typename LayoutC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// If true, kernel is configured to support serial reduction in the epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear,
/// Gather operand A by using an index array
bool GatherA,
/// Gather operand B by using an index array
bool GatherB,
/// Scatter result D by using an index array
bool ScatterD,
/// Permute result D
typename PermuteDLayout
>
struct DefaultGemm<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
GemmShape<1, 1, 1>,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
SplitKSerial,
Operator,
SharedMemoryClear,
GatherA,
GatherB,
ScatterD,
PermuteDLayout,
typename platform::enable_if< ! platform::is_same<ArchTag, arch::Sm80>::value >::type > {
static_assert((platform::is_same<LayoutC, layout::RowMajor>::value
|| platform::is_same<LayoutC, layout::AffineRankN<2>>::value),
"Epilogue in the kernel level must be row major");
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementAccumulator,
LayoutC,
arch::OpClassSimt,
arch::Sm50,
ThreadblockShape,
WarpShape,
GemmShape<1, 1, 1>,
2,
Operator,
false,
SharedMemoryClear,
GatherA,
GatherB>::ThreadblockMma;
static int const kEpilogueElementsPerAccess = EpilogueOutputOp::kCount;
static_assert(kEpilogueElementsPerAccess == 1, "simt epilogue must operate on scalars");
/// Define the epilogue
using RegularEpilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
ThreadblockShape,
typename Mma::Operator,
EpilogueOutputOp,
kEpilogueElementsPerAccess,
ScatterD,
PermuteDLayout
>::Epilogue;
using Affine2Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimtAffineRankN<
2,
ThreadblockShape,
typename Mma::Operator,
EpilogueOutputOp,
kEpilogueElementsPerAccess
>::Epilogue;
using Epilogue = typename platform::conditional<platform::is_same<LayoutC, layout::RowMajor>::value,
RegularEpilogue,
Affine2Epilogue>::type;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Ampere
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of A matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Layout type for C and D matrix operand
typename LayoutC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages
int Stages,
/// If true, kernel is configured to support serial reduction in the epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear,
/// Gather operand A by using an index array
bool GatherA,
/// Gather operand B by using an index array
bool GatherB,
/// Scatter result D by using an index array
bool ScatterD,
/// Permute result D
typename PermuteDLayout
>
struct DefaultGemm<ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
arch::Sm80,
ThreadblockShape,
WarpShape,
GemmShape<1, 1, 1>,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
SplitKSerial,
Operator,
SharedMemoryClear,
GatherA,
GatherB,
ScatterD,
PermuteDLayout> {
static_assert((platform::is_same<LayoutC, layout::RowMajor>::value
|| platform::is_same<LayoutC, layout::AffineRankN<2>>::value),
"Epilogue in the kernel level must be row major");
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
ElementAccumulator, LayoutC, arch::OpClassSimt, arch::Sm80,
ThreadblockShape, WarpShape, GemmShape<1, 1, 1>, Stages,
Operator, false, SharedMemoryClear, GatherA, GatherB>::ThreadblockMma;
static int const kEpilogueElementsPerAccess = EpilogueOutputOp::kCount;
static_assert(kEpilogueElementsPerAccess == 1, "simt epilogue must operate on scalars");
/// Define the epilogue
using RegularEpilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
ThreadblockShape,
typename Mma::Operator,
EpilogueOutputOp,
kEpilogueElementsPerAccess,
ScatterD,
PermuteDLayout
>::Epilogue;
using Affine2Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimtAffineRankN<
2,
ThreadblockShape,
typename Mma::Operator,
EpilogueOutputOp,
kEpilogueElementsPerAccess
>::Epilogue;
using Epilogue = typename platform::conditional<platform::is_same<LayoutC, layout::RowMajor>::value,
RegularEpilogue,
Affine2Epilogue>::type;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for SIMT DP4A
template <
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of A matrix in units of elements
int kAlignmentB,
/// Layout type for C matrix operand
typename LayoutC,
/// Element type for C and D matrix operands
typename ElementC,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear
>
struct DefaultGemm<int8_t, LayoutA, kAlignmentA, int8_t, LayoutB, kAlignmentB,
ElementC, LayoutC, ElementAccumulator, arch::OpClassSimt,
ArchTag, ThreadblockShape, WarpShape, GemmShape<1, 1, 4>,
EpilogueOutputOp, ThreadblockSwizzle, 2, SplitKSerial,
Operator, SharedMemoryClear, false, false, false> {
using InstructionShape = GemmShape<1, 1, 4>;
using ElementA = int8_t;
using ElementB = int8_t;
using OperatorClass = arch::OpClassSimt;
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementAccumulator,
LayoutC,
arch::OpClassSimt,
arch::Sm50,
ThreadblockShape,
WarpShape,
InstructionShape,
2,
Operator
>::ThreadblockMma;
static int const kEpilogueElementsPerAccess = EpilogueOutputOp::kCount;
static_assert(kEpilogueElementsPerAccess == 1, "simt epilogue must operate on scalars");
/// Define the epilogue
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt<
ThreadblockShape,
typename Mma::Operator,
EpilogueOutputOp,
kEpilogueElementsPerAccess
>::Epilogue;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
#if defined(CUTLASS_ARCH_WMMA_ENABLED)
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Wmma Gemm Kernel
template <
///< Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of A matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Layout type for C and D matrix operands
typename LayoutC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator,
/// Use zfill or predicate for out-of-bound cp.async
SharedMemoryClearOption SharedMemoryClear
>
struct DefaultGemm<
ElementA, LayoutA, kAlignmentA,
ElementB, LayoutB, kAlignmentB,
ElementC, LayoutC,
ElementAccumulator,
arch::OpClassWmmaTensorOp,
ArchTag,
ThreadblockShape, WarpShape, InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
SplitKSerial,
Operator,
SharedMemoryClear,
false,
false,
false
> {
/// Define the threadblock-scoped matrix multiply-accumulate
using Mma = typename cutlass::gemm::threadblock::DefaultMma<
ElementA, LayoutA, kAlignmentA,
ElementB, LayoutB, kAlignmentB,
ElementAccumulator, LayoutC,
arch::OpClassWmmaTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
Stages,
Operator>::ThreadblockMma;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
/// Define the epilogue
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueWmmaTensorOp<
ThreadblockShape,
typename Mma::Operator,
kPartitionsK,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
/// Define the kernel-level GEMM operator.
using GemmKernel = kernel::Gemm<Mma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
#endif //CUTLASS_ARCH_WMMA_ENABLED
////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace gemm
} // namespace cutlass