cutlass/test/unit/gemm/device/gemm_splitk_simt_sm50.cu
Andrew Kerr fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00

141 lines
4.8 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm_splitk_parallel.h"
#include "../../common/cutlass_unit_test.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "testbed_splitk.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Device_GemmSplitKParallel_f32n_f32t_f32t_simt_f32, 128x128x8) {
using ElementOutput = float;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmSplitKParallel<
float,
cutlass::layout::ColumnMajor,
float,
cutlass::layout::RowMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassSimt,
cutlass::arch::Sm50,
cutlass::gemm::GemmShape<128, 128, 8>,
cutlass::gemm::GemmShape<32, 64, 8>,
cutlass::gemm::GemmShape<1, 1, 1>
>;
test::gemm::device::TestAllGemmSplitK<Gemm>();
}
TEST(SM50_Device_GemmSplitKParallel_f32n_f32n_f32n_simt_f32, 128x128x8) {
using ElementOutput = float;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmSplitKParallel<
float,
cutlass::layout::ColumnMajor,
float,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::ColumnMajor,
ElementAccumulator,
cutlass::arch::OpClassSimt,
cutlass::arch::Sm50,
cutlass::gemm::GemmShape<128, 128, 8>,
cutlass::gemm::GemmShape<32, 64, 8>,
cutlass::gemm::GemmShape<1, 1, 1>
>;
test::gemm::device::TestAllGemmSplitK<Gemm>();
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(SM50_Device_GemmSplitKParallel_f64n_f64n_f64t_simt_f64, 64x128x8) {
using Element = double;
using Gemm = cutlass::gemm::device::GemmSplitKParallel<
Element,
cutlass::layout::ColumnMajor,
Element,
cutlass::layout::ColumnMajor,
Element,
cutlass::layout::RowMajor,
Element,
cutlass::arch::OpClassSimt,
cutlass::arch::Sm50,
cutlass::gemm::GemmShape<64, 128, 8>,
cutlass::gemm::GemmShape<32, 64, 8>,
cutlass::gemm::GemmShape<1, 1, 1>
>;
test::gemm::device::TestAllGemmSplitK<Gemm>();
}
TEST(SM50_Device_GemmSplitKParallel_f64t_f64t_f64n_simt_f64, 64x64x8) {
using Element = double;
using Gemm = cutlass::gemm::device::GemmSplitKParallel<
Element,
cutlass::layout::RowMajor,
Element,
cutlass::layout::RowMajor,
Element,
cutlass::layout::ColumnMajor,
Element,
cutlass::arch::OpClassSimt,
cutlass::arch::Sm50,
cutlass::gemm::GemmShape<64, 64, 8>,
cutlass::gemm::GemmShape<32, 64, 8>,
cutlass::gemm::GemmShape<1, 1, 1>
>;
test::gemm::device::TestAllGemmSplitK<Gemm>();
}
/////////////////////////////////////////////////////////////////////////////////////////////////