cutlass/test/unit/gemm/device/simt_int8_igemm_sm61.cu
Andrew Kerr fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00

158 lines
7.0 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "../../common/cutlass_unit_test.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "testbed.h"
#define N cutlass::layout::ColumnMajor
#define T cutlass::layout::RowMajor
#define RUN_GEMM(X, Y) \
using ElementOutput = int8_t; \
using ElementAccumulator = int32_t; \
using ElementCompute = float; \
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; \
using Gemm = cutlass::gemm::device::Gemm< \
int8_t, \
X, \
int8_t, \
Y, \
ElementOutput, \
cutlass::layout::RowMajor, \
int32_t, \
cutlass::arch::OpClassSimt, \
cutlass::arch::Sm61, \
ThreadBlockShape, \
WarpShape, \
InstructionShape, \
cutlass::epilogue::thread::LinearCombinationClamp< \
ElementOutput, \
1, \
ElementAccumulator, \
ElementCompute \
>, \
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle, \
2 \
>; \
EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>()); \
////////////////////////////////////////////////////////////////////////////////
TEST(SM61_Device_Gemm_s8n_s8t_simt_op_dp4a, 64x64x16_64x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>;
RUN_GEMM(N, T)
}
TEST(SM61_Device_Gemm_s8n_s8t_simt_op_dp4a, 256x128x64_64x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
RUN_GEMM(N, T)
}
TEST(SM61_Device_Gemm_s8n_s8t_simt_op_dp4a, 256x256x16_128x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 256, 16>;
using WarpShape = cutlass::gemm::GemmShape<128, 64, 16>;
RUN_GEMM(N, T)
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM61_Device_Gemm_s8t_s8n_simt_op_dp4a, 64x64x16_64x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>;
RUN_GEMM(T, N)
}
TEST(SM61_Device_Gemm_s8t_s8n_simt_op_dp4a, 256x128x64_64x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
RUN_GEMM(T, N)
}
TEST(SM61_Device_Gemm_s8t_s8n_simt_op_dp4a, 256x256x16_128x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 256, 16>;
using WarpShape = cutlass::gemm::GemmShape<128, 64, 16>;
RUN_GEMM(T, N)
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM61_Device_Gemm_s8n_s8n_simt_op_dp4a, 64x64x16_64x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>;
RUN_GEMM(N, N)
}
TEST(SM61_Device_Gemm_s8n_s8n_simt_op_dp4a, 256x128x64_64x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
RUN_GEMM(N, N)
}
TEST(SM61_Device_Gemm_s8n_s8n_simt_op_dp4a, 256x256x16_128x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 256, 16>;
using WarpShape = cutlass::gemm::GemmShape<128, 64, 16>;
RUN_GEMM(N, N)
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM61_Device_Gemm_s8t_s8t_simt_op_dp4a, 64x64x16_64x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 16>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>;
RUN_GEMM(T, T)
}
TEST(SM61_Device_Gemm_s8t_s8t_simt_op_dp4a, 256x128x64_64x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>;
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
RUN_GEMM(T, T)
}
TEST(SM61_Device_Gemm_s8t_s8t_simt_op_dp4a, 256x256x16_128x64x4) {
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 256, 16>;
using WarpShape = cutlass::gemm::GemmShape<128, 64, 16>;
RUN_GEMM(T, T)
}