
CUTLASS 2.0 Substantially refactored for - Better performance, particularly for native Turing Tensor Cores - Robust and durable templates spanning the design space - Encapsulated functionality embodying modern C++11 programming techniques - Optimized containers and data types for efficient, generic, portable device code Updates to: - Quick start guide - Documentation - Utilities - CUTLASS Profiler Native Turing Tensor Cores - Efficient GEMM kernels targeting Turing Tensor Cores - Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands Coverage of existing CUTLASS functionality: - GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs - Volta Tensor Cores through native mma.sync and through WMMA API - Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions - Batched GEMM operations - Complex-valued GEMMs Note: this commit and all that follow require a host compiler supporting C++11 or greater.
302 lines
8.9 KiB
C++
302 lines
8.9 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Tests for device-wide GEMM interface
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#include "../../common/cutlass_unit_test.h"
|
|
|
|
#include "cutlass/util/host_tensor.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
#include "cutlass/util/distribution.h"
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
#include "cutlass/util/reference/host/tensor_copy.h"
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
#include "cutlass/util/reference/host/tensor_norm.h"
|
|
#include "cutlass/util/reference/host/gemm.h"
|
|
#include "cutlass/util/host_reorder.h"
|
|
|
|
namespace test {
|
|
namespace gemm {
|
|
namespace device {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename Gemm, int InterleavedK>
|
|
struct InterleavedTestbed {
|
|
|
|
using ElementAccumulator = typename Gemm::ElementAccumulator;
|
|
using ElementCompute = typename Gemm::GemmKernel::Epilogue::OutputOp::ElementCompute;
|
|
|
|
/// Initialization
|
|
cutlass::Distribution::Kind init_A;
|
|
cutlass::Distribution::Kind init_B;
|
|
cutlass::Distribution::Kind init_C;
|
|
uint64_t seed;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
InterleavedTestbed(
|
|
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
|
uint64_t seed_ = 2080
|
|
):
|
|
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
|
|
|
|
/// Helper to initialize a tensor view
|
|
template <typename Element, typename Layout>
|
|
bool initialize_tensor(
|
|
cutlass::TensorView<Element, Layout> view,
|
|
cutlass::Distribution::Kind dist_kind,
|
|
uint64_t seed) {
|
|
|
|
if (dist_kind == cutlass::Distribution::Uniform) {
|
|
|
|
cutlass::reference::host::TensorFillRandomUniform(
|
|
view, seed, 2, -2, 0);
|
|
}
|
|
else if (dist_kind == cutlass::Distribution::Identity) {
|
|
|
|
cutlass::reference::host::TensorFillIdentity(view);
|
|
}
|
|
else if (dist_kind == cutlass::Distribution::Sequential) {
|
|
|
|
cutlass::reference::host::BlockFillSequential(
|
|
view.data(), view.capacity());
|
|
}
|
|
else {
|
|
// TODO: Implement the rest
|
|
EXPECT_TRUE(false) << "Not implemented";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Executes one test
|
|
bool run(
|
|
cutlass::gemm::GemmCoord problem_size,
|
|
ElementCompute alpha = ElementCompute(1),
|
|
ElementCompute beta = ElementCompute(0)) {
|
|
|
|
//
|
|
// Allocate the GEMM workspace
|
|
//
|
|
|
|
cutlass::HostTensor<
|
|
typename Gemm::ElementA,
|
|
typename Gemm::LayoutA> tensor_A(problem_size.mk());
|
|
|
|
cutlass::HostTensor<
|
|
typename Gemm::ElementB,
|
|
typename Gemm::LayoutB> tensor_B(problem_size.kn());
|
|
|
|
cutlass::HostTensor<
|
|
typename Gemm::ElementB,
|
|
typename Gemm::LayoutB> tensor_B_reordered(problem_size.kn());
|
|
|
|
cutlass::HostTensor<
|
|
typename Gemm::ElementC,
|
|
typename Gemm::LayoutC> tensor_C(problem_size.mn());
|
|
|
|
cutlass::HostTensor<
|
|
typename Gemm::ElementC,
|
|
typename Gemm::LayoutC> tensor_D(problem_size.mn());
|
|
|
|
cutlass::HostTensor<
|
|
typename Gemm::ElementC,
|
|
typename Gemm::LayoutC> reference_D(problem_size.mn(), false);
|
|
|
|
EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019));
|
|
EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018));
|
|
EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017));
|
|
|
|
cutlass::reorder_column<InterleavedK>(
|
|
tensor_B_reordered.host_ref(), tensor_B.host_ref(), problem_size);
|
|
|
|
cutlass::reference::host::TensorCopy(
|
|
reference_D.host_view(),
|
|
tensor_C.host_view());
|
|
|
|
tensor_A.sync_device();
|
|
tensor_B_reordered.sync_device();
|
|
tensor_C.sync_device();
|
|
tensor_D.sync_device();
|
|
|
|
//
|
|
// Initialize the GEMM operator
|
|
//
|
|
|
|
typename Gemm::Arguments arguments{
|
|
problem_size,
|
|
tensor_A.device_ref(),
|
|
tensor_B_reordered.device_ref(),
|
|
tensor_C.device_ref(),
|
|
tensor_D.device_ref(),
|
|
{alpha, beta}
|
|
};
|
|
|
|
Gemm gemm_op;
|
|
|
|
cutlass::Status status = gemm_op.initialize(arguments);
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess);
|
|
|
|
//
|
|
// Run the GEMM
|
|
//
|
|
|
|
status = gemm_op();
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess);
|
|
|
|
//
|
|
// Verify
|
|
//
|
|
|
|
cutlass::reference::host::Gemm<
|
|
typename Gemm::ElementA, typename Gemm::LayoutA,
|
|
typename Gemm::ElementB, typename Gemm::LayoutB,
|
|
typename Gemm::ElementC, typename Gemm::LayoutC, ElementCompute,
|
|
ElementAccumulator, typename Gemm::Operator>
|
|
reference_gemm;
|
|
|
|
reference_gemm(
|
|
problem_size,
|
|
alpha,
|
|
tensor_A.host_ref(),
|
|
tensor_B.host_ref(),
|
|
beta,
|
|
reference_D.host_ref(),
|
|
ElementAccumulator(0)
|
|
);
|
|
|
|
tensor_D.sync_host();
|
|
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0);
|
|
|
|
bool passed = cutlass::reference::host::TensorEquals(
|
|
reference_D.host_view(),
|
|
tensor_D.host_view());
|
|
|
|
EXPECT_TRUE(passed);
|
|
if (!passed) {
|
|
|
|
std::stringstream fname;
|
|
|
|
fname << "error_Gemm_device_"
|
|
<< problem_size.m() << "x"
|
|
<< problem_size.n() << "x"
|
|
<< problem_size.k() << "_"
|
|
<< Gemm::ThreadblockShape::kM << "x"
|
|
<< Gemm::ThreadblockShape::kN << "x"
|
|
<< Gemm::ThreadblockShape::kK << "_"
|
|
<< Gemm::WarpShape::kM << "x"
|
|
<< Gemm::WarpShape::kN << "x"
|
|
<< Gemm::WarpShape::kK << ".txt";
|
|
|
|
std::ofstream file(fname.str());
|
|
|
|
file
|
|
<< "problem: " << problem_size
|
|
<< ", alpha: " << alpha << ", beta: " << beta << "\n\n";
|
|
|
|
file
|
|
<< "A =\n" << tensor_A.host_view()
|
|
<< "\nB =\n" << tensor_B.host_view()
|
|
<< "\nB_reordered =\n" << tensor_B_reordered.host_view()
|
|
<< "\nC =\n" << tensor_C.host_view()
|
|
<< "\n\nReference =\n" << reference_D.host_view()
|
|
<< "\nComputed =\n" << tensor_D.host_view();
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
|
|
/// Runs a set of problem sizes
|
|
bool run_all() {
|
|
bool passed = true;
|
|
|
|
int problem_size_m[] = {
|
|
InterleavedK, 256 + InterleavedK, 512 + InterleavedK
|
|
};
|
|
|
|
int problem_size_n[] = {
|
|
InterleavedK, 256 + InterleavedK, 512 + InterleavedK
|
|
};
|
|
|
|
int problem_size_k[] = {
|
|
InterleavedK, 256 + InterleavedK, 512 + InterleavedK
|
|
};
|
|
|
|
double problem_alpha[] = {
|
|
1.0
|
|
};
|
|
|
|
double problem_beta[] = {
|
|
2.0
|
|
};
|
|
|
|
for (int m : problem_size_m) {
|
|
for (int n : problem_size_n) {
|
|
for (int k : problem_size_k) {
|
|
for (double alpha : problem_alpha) {
|
|
for (double beta : problem_beta) {
|
|
|
|
passed = run(
|
|
{m, n, k},
|
|
ElementCompute(alpha),
|
|
ElementCompute(beta)
|
|
);
|
|
|
|
if (!passed) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace device
|
|
} // namespace gemm
|
|
} // namespace test
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|