
CUTLASS 2.1 contributes: - BLAS-style host-side API added to CUTLASS Library - Planar Complex GEMM kernels targeting Volta and Turing Tensor Cores - Minor enhancements and bug fixes
177 lines
5.0 KiB
C++
177 lines
5.0 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Tests for device-wide GEMM interface
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#include "../../common/cutlass_unit_test.h"
|
|
|
|
#include "testbed.h"
|
|
|
|
namespace test {
|
|
namespace gemm {
|
|
namespace device {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename Gemm>
|
|
struct TestbedSplitK : public Testbed<Gemm> {
|
|
|
|
using Base = Testbed<Gemm>;
|
|
|
|
using ElementCompute = typename Base::ElementCompute;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
TestbedSplitK(
|
|
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
|
uint64_t seed_ = 2080
|
|
):
|
|
Base(init_A_, init_B_, init_C_, seed_) { }
|
|
|
|
/// Executes one test
|
|
bool run(
|
|
cutlass::gemm::GemmCoord problem_size,
|
|
int split_k_slices,
|
|
ElementCompute alpha = ElementCompute(1),
|
|
ElementCompute beta = ElementCompute(0)) {
|
|
|
|
this->initialize(problem_size);
|
|
|
|
//
|
|
// Initialize the GEMM operator
|
|
//
|
|
|
|
typename Gemm::Arguments arguments{
|
|
problem_size,
|
|
this->tensor_A.device_ref(),
|
|
this->tensor_B.device_ref(),
|
|
this->tensor_C.device_ref(),
|
|
this->tensor_D.device_ref(),
|
|
{alpha, beta},
|
|
split_k_slices
|
|
};
|
|
|
|
Gemm gemm_op;
|
|
|
|
size_t workspace_size = Gemm::get_workspace_size(arguments);
|
|
|
|
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
|
|
|
cutlass::Status status = gemm_op.initialize(arguments, workspace.get());
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess);
|
|
|
|
//
|
|
// Run the GEMM
|
|
//
|
|
|
|
status = gemm_op();
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess);
|
|
|
|
//
|
|
// Verify
|
|
//
|
|
|
|
return this->verify(problem_size, alpha, beta);
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename Gemm>
|
|
bool TestAllGemmSplitK() {
|
|
bool passed = true;
|
|
|
|
cutlass::gemm::GemmCoord problem_sizes[] = {
|
|
{8, 8, 2048},
|
|
{8, 8, 2056},
|
|
{264, 72, 520},
|
|
{264, 520, 120},
|
|
{264, 520, 264}
|
|
};
|
|
|
|
int split_k_slices[] = {
|
|
1, 2, 4, 5, 7
|
|
};
|
|
|
|
double problem_alpha[] = {
|
|
0.5
|
|
};
|
|
|
|
double problem_beta[] = {
|
|
2.0
|
|
};
|
|
|
|
using Testbed = TestbedSplitK<Gemm>;
|
|
using ElementCompute = typename Testbed::ElementCompute;
|
|
|
|
Testbed testbed;
|
|
|
|
for (auto problem_size : problem_sizes) {
|
|
for (int split_k_count : split_k_slices) {
|
|
for (double alpha : problem_alpha) {
|
|
for (double beta : problem_beta) {
|
|
|
|
passed = testbed.run(
|
|
problem_size,
|
|
split_k_count,
|
|
ElementCompute(alpha),
|
|
ElementCompute(beta)
|
|
);
|
|
|
|
if (!passed) {
|
|
std::cout << "Failed on size " << problem_size << " with split_k_count " << split_k_count << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
EXPECT_TRUE(passed);
|
|
|
|
return passed;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace device
|
|
} // namespace gemm
|
|
} // namespace test
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|