
* v3.6 * update changelog * update readme * fix typo * fixing typos * hopper gemm with weight prefetch --------- Co-authored-by: yuzhai <yuzhai@nvidia.com> Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
173 lines
7.1 KiB
C++
173 lines
7.1 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include <cute/config.hpp> // CUTE_HOST_DEVICE
|
|
#include <cute/pointer_base.hpp> // cute::iter_adaptor
|
|
#include <cute/numeric/integral_constant.hpp> // cute::false_type, cute::true_type
|
|
#include <cute/numeric/integral_ratio.hpp> // cute::ratio
|
|
|
|
namespace cute
|
|
{
|
|
|
|
// A data type that holds one physical element meant to represent Sparsity number of logical elements
|
|
// This class is purposely not compatible with anything -- know what you're doing if you attempt to use it
|
|
template <int Sparsity, class T>
|
|
struct sparse_elem
|
|
{
|
|
static constexpr int sparsity = Sparsity;
|
|
using raw_type = T;
|
|
T elem_;
|
|
|
|
CUTE_HOST_DEVICE constexpr
|
|
explicit sparse_elem(T const& elem = {}) : elem_(elem) {}
|
|
|
|
CUTE_HOST_DEVICE constexpr friend bool operator==(sparse_elem const& a, sparse_elem const& b) { return a.elem_ == b.elem_; }
|
|
CUTE_HOST_DEVICE constexpr friend bool operator!=(sparse_elem const& a, sparse_elem const& b) { return a.elem_ != b.elem_; }
|
|
CUTE_HOST_DEVICE constexpr friend bool operator< (sparse_elem const& a, sparse_elem const& b) { return a.elem_ < b.elem_; }
|
|
CUTE_HOST_DEVICE constexpr friend bool operator<=(sparse_elem const& a, sparse_elem const& b) { return a.elem_ <= b.elem_; }
|
|
CUTE_HOST_DEVICE constexpr friend bool operator> (sparse_elem const& a, sparse_elem const& b) { return a.elem_ > b.elem_; }
|
|
CUTE_HOST_DEVICE constexpr friend bool operator>=(sparse_elem const& a, sparse_elem const& b) { return a.elem_ >= b.elem_; }
|
|
};
|
|
|
|
template <class T>
|
|
struct is_sparse : false_type {};
|
|
template <class T>
|
|
struct is_sparse<T const> : is_sparse<T> {};
|
|
template <int S, class T>
|
|
struct is_sparse<sparse_elem<S,T>> : true_type {};
|
|
template<class T>
|
|
static constexpr auto is_sparse_v = is_sparse<T>::value;
|
|
|
|
// Overload sizeof_bits for sparse_elem.
|
|
// Much like subbyte element types, this is the effective number of bits in a sparse_elem
|
|
// rather than actual physical bits that may be used in storing one. Also like subbyte element
|
|
// types, modified iterators are required to properly index and access sparse_elems.
|
|
//
|
|
// Defining sizeof_bits like this makes reasonable expressions like N * sizeof_bits_v<E> meaningful
|
|
// even when E is subbyte or sparse. However, this also means that sparse_elem can rather easily be
|
|
// confused with subbyte elements and special care should be taken with each.
|
|
template <int S, class T>
|
|
struct sizeof_bits<sparse_elem<S,T>> {
|
|
// Simple implementation that conforms to sizeof_bits
|
|
//static constexpr auto value = sizeof_bits<T>::value / S;
|
|
//static_assert(value != 0, "sizeof_bits=0 detected. Sparsity is larger than width.");
|
|
//static_assert((sizeof_bits<T>::value % S) == 0, "Width needs to be a multiple of sparsity.")
|
|
|
|
// Interesting experiment that allows any sparsity level to be used by potentially presenting
|
|
// an integral_ratio rather than size_t. This is valid in most integer expressions as well.
|
|
static constexpr auto value = cute::ratio(cute::Int<cute::sizeof_bits_v<T>>{}, cute::Int<S>{});
|
|
};
|
|
|
|
//
|
|
// sparse_ptr
|
|
//
|
|
|
|
template <class T, class = void>
|
|
struct is_sparse_ptr : false_type {};
|
|
template <class T>
|
|
struct is_sparse_ptr<T, void_t<typename T::iterator>> : is_sparse_ptr<typename T::iterator> {};
|
|
|
|
template <int Sparsity, class Iterator>
|
|
struct sparse_ptr : iter_adaptor<Iterator, sparse_ptr<Sparsity, Iterator>>
|
|
{
|
|
using reference = typename iterator_traits<Iterator>::reference;
|
|
using element_type = typename iterator_traits<Iterator>::element_type;
|
|
using value_type = typename iterator_traits<Iterator>::value_type;
|
|
|
|
// Sanity, for now
|
|
static_assert(is_sparse<value_type>::value, "Enforce sparse value-type");
|
|
static_assert(Sparsity == iter_value_t<Iterator>::sparsity, "Enforce sparsity S");
|
|
static_assert(not is_sparse_ptr<Iterator>::value, "Enforce sparse singleton");
|
|
|
|
template <class Index>
|
|
CUTE_HOST_DEVICE constexpr
|
|
sparse_ptr operator+(Index const& i) const {
|
|
// Only allow offset by multiples of the sparsity factor,
|
|
// else the misalignments become a bug. E.g. (sparse_ptr<8,I>{} + 7) + 7
|
|
// Motivation for subsparse_iterator or generalization of subbyte_iterator?
|
|
assert(i % Sparsity == 0);
|
|
return {this->get() + i / Sparsity};
|
|
}
|
|
|
|
template <class Index>
|
|
CUTE_HOST_DEVICE constexpr
|
|
reference operator[](Index const& i) const {
|
|
// Allow offset by any value and dereference.
|
|
// Not implemented in terms of sparse_ptr::op+()
|
|
return *(this->get() + i / Sparsity);
|
|
}
|
|
};
|
|
|
|
template <int S, class I>
|
|
struct is_sparse_ptr<sparse_ptr<S,I>> : true_type {};
|
|
|
|
template <int Sparsity, class Iter>
|
|
CUTE_HOST_DEVICE constexpr
|
|
auto
|
|
make_sparse_ptr(Iter const& iter) {
|
|
if constexpr (Sparsity == 1) {
|
|
return iter;
|
|
} else {
|
|
return sparse_ptr<Sparsity, Iter>{iter};
|
|
}
|
|
CUTE_GCC_UNREACHABLE;
|
|
}
|
|
|
|
template <class NewT, int S, class Iter>
|
|
CUTE_HOST_DEVICE constexpr
|
|
auto
|
|
recast_ptr(sparse_ptr<S,Iter> const& ptr) {
|
|
static_assert(not is_sparse<NewT>::value);
|
|
return recast_ptr<NewT>(ptr.get());
|
|
}
|
|
|
|
//
|
|
// Display utilities
|
|
//
|
|
|
|
template <int S, class Iter>
|
|
CUTE_HOST_DEVICE void print(sparse_ptr<S,Iter> ptr)
|
|
{
|
|
printf("sparse<%d>_", S); print(ptr.get());
|
|
}
|
|
|
|
#if !defined(__CUDACC_RTC__)
|
|
template <int S, class Iter>
|
|
CUTE_HOST std::ostream& operator<<(std::ostream& os, sparse_ptr<S,Iter> ptr)
|
|
{
|
|
return os << "sparse<" << S << ">_" << ptr.get();
|
|
}
|
|
#endif
|
|
|
|
} // end namespace cute
|