cutlass/include/cute/pointer_sparse.hpp
Yujia Zhai cc3c29a81a
CUTLASS 3.6.0 (#1850)
* v3.6

* update changelog

* update readme

* fix typo

* fixing typos

* hopper gemm with weight prefetch

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2024-10-09 15:33:27 -04:00

173 lines
7.1 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp> // CUTE_HOST_DEVICE
#include <cute/pointer_base.hpp> // cute::iter_adaptor
#include <cute/numeric/integral_constant.hpp> // cute::false_type, cute::true_type
#include <cute/numeric/integral_ratio.hpp> // cute::ratio
namespace cute
{
// A data type that holds one physical element meant to represent Sparsity number of logical elements
// This class is purposely not compatible with anything -- know what you're doing if you attempt to use it
template <int Sparsity, class T>
struct sparse_elem
{
static constexpr int sparsity = Sparsity;
using raw_type = T;
T elem_;
CUTE_HOST_DEVICE constexpr
explicit sparse_elem(T const& elem = {}) : elem_(elem) {}
CUTE_HOST_DEVICE constexpr friend bool operator==(sparse_elem const& a, sparse_elem const& b) { return a.elem_ == b.elem_; }
CUTE_HOST_DEVICE constexpr friend bool operator!=(sparse_elem const& a, sparse_elem const& b) { return a.elem_ != b.elem_; }
CUTE_HOST_DEVICE constexpr friend bool operator< (sparse_elem const& a, sparse_elem const& b) { return a.elem_ < b.elem_; }
CUTE_HOST_DEVICE constexpr friend bool operator<=(sparse_elem const& a, sparse_elem const& b) { return a.elem_ <= b.elem_; }
CUTE_HOST_DEVICE constexpr friend bool operator> (sparse_elem const& a, sparse_elem const& b) { return a.elem_ > b.elem_; }
CUTE_HOST_DEVICE constexpr friend bool operator>=(sparse_elem const& a, sparse_elem const& b) { return a.elem_ >= b.elem_; }
};
template <class T>
struct is_sparse : false_type {};
template <class T>
struct is_sparse<T const> : is_sparse<T> {};
template <int S, class T>
struct is_sparse<sparse_elem<S,T>> : true_type {};
template<class T>
static constexpr auto is_sparse_v = is_sparse<T>::value;
// Overload sizeof_bits for sparse_elem.
// Much like subbyte element types, this is the effective number of bits in a sparse_elem
// rather than actual physical bits that may be used in storing one. Also like subbyte element
// types, modified iterators are required to properly index and access sparse_elems.
//
// Defining sizeof_bits like this makes reasonable expressions like N * sizeof_bits_v<E> meaningful
// even when E is subbyte or sparse. However, this also means that sparse_elem can rather easily be
// confused with subbyte elements and special care should be taken with each.
template <int S, class T>
struct sizeof_bits<sparse_elem<S,T>> {
// Simple implementation that conforms to sizeof_bits
//static constexpr auto value = sizeof_bits<T>::value / S;
//static_assert(value != 0, "sizeof_bits=0 detected. Sparsity is larger than width.");
//static_assert((sizeof_bits<T>::value % S) == 0, "Width needs to be a multiple of sparsity.")
// Interesting experiment that allows any sparsity level to be used by potentially presenting
// an integral_ratio rather than size_t. This is valid in most integer expressions as well.
static constexpr auto value = cute::ratio(cute::Int<cute::sizeof_bits_v<T>>{}, cute::Int<S>{});
};
//
// sparse_ptr
//
template <class T, class = void>
struct is_sparse_ptr : false_type {};
template <class T>
struct is_sparse_ptr<T, void_t<typename T::iterator>> : is_sparse_ptr<typename T::iterator> {};
template <int Sparsity, class Iterator>
struct sparse_ptr : iter_adaptor<Iterator, sparse_ptr<Sparsity, Iterator>>
{
using reference = typename iterator_traits<Iterator>::reference;
using element_type = typename iterator_traits<Iterator>::element_type;
using value_type = typename iterator_traits<Iterator>::value_type;
// Sanity, for now
static_assert(is_sparse<value_type>::value, "Enforce sparse value-type");
static_assert(Sparsity == iter_value_t<Iterator>::sparsity, "Enforce sparsity S");
static_assert(not is_sparse_ptr<Iterator>::value, "Enforce sparse singleton");
template <class Index>
CUTE_HOST_DEVICE constexpr
sparse_ptr operator+(Index const& i) const {
// Only allow offset by multiples of the sparsity factor,
// else the misalignments become a bug. E.g. (sparse_ptr<8,I>{} + 7) + 7
// Motivation for subsparse_iterator or generalization of subbyte_iterator?
assert(i % Sparsity == 0);
return {this->get() + i / Sparsity};
}
template <class Index>
CUTE_HOST_DEVICE constexpr
reference operator[](Index const& i) const {
// Allow offset by any value and dereference.
// Not implemented in terms of sparse_ptr::op+()
return *(this->get() + i / Sparsity);
}
};
template <int S, class I>
struct is_sparse_ptr<sparse_ptr<S,I>> : true_type {};
template <int Sparsity, class Iter>
CUTE_HOST_DEVICE constexpr
auto
make_sparse_ptr(Iter const& iter) {
if constexpr (Sparsity == 1) {
return iter;
} else {
return sparse_ptr<Sparsity, Iter>{iter};
}
CUTE_GCC_UNREACHABLE;
}
template <class NewT, int S, class Iter>
CUTE_HOST_DEVICE constexpr
auto
recast_ptr(sparse_ptr<S,Iter> const& ptr) {
static_assert(not is_sparse<NewT>::value);
return recast_ptr<NewT>(ptr.get());
}
//
// Display utilities
//
template <int S, class Iter>
CUTE_HOST_DEVICE void print(sparse_ptr<S,Iter> ptr)
{
printf("sparse<%d>_", S); print(ptr.get());
}
#if !defined(__CUDACC_RTC__)
template <int S, class Iter>
CUTE_HOST std::ostream& operator<<(std::ostream& os, sparse_ptr<S,Iter> ptr)
{
return os << "sparse<" << S << ">_" << ptr.get();
}
#endif
} // end namespace cute