cutlass/tools/util/reference/device/thread/gemm.h
Artem Belevich e18292db46 Make CUTLASS compileable with Clang.
Requires a recent clang build (r359248 or newer).

Enable compilation with clang with these options:
cmake -DCUDA_COMPILER=clang -DCMAKE_CXX_COMPILER=/path/to/clang++
2019-05-02 11:00:22 -07:00

177 lines
5.5 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Reference implementation for GEMM in host-side code.
*/
#pragma once
#include "cutlass/coord.h"
#include "cutlass/matrix_traits.h"
#include "cutlass/tensor_view.h"
#include "cutlass/gemm/gemm_coord.h"
#include "tools/util/reference/detail/inner_product.h"
namespace cutlass {
namespace reference {
namespace device {
namespace thread {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Thread-level blocked general matrix product.
//
// Note, this is a reference implementation. Performance is not expected to approach peak.
//
template <
typename TensorRefA,
typename TensorRefB,
typename TensorRefC,
typename ScalarType,
typename AccumulatorType,
typename OutputTile
>
struct Gemm {
typedef typename TensorRefA::Storage ScalarA;
typedef typename TensorRefB::Storage ScalarB;
typedef typename TensorRefC::Storage ScalarC;
//
// Data members
//
/// Tile for A operand
ScalarA A_tile[OutputTile::kW];
/// Tile for B operand
ScalarB B_tile[OutputTile::kH];
/// Tile for Accumulator
AccumulatorType accum[OutputTile::kH][OutputTile::kW];
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
Gemm(AccumulatorType initial_accum = AccumulatorType(0)) {
// Clear fetch registers
for (int i = 0; i < OutputTile::kW; ++i) {
A_tile[i] = ScalarA(0);
}
for (int j = 0; j < OutputTile::kW; ++j) {
B_tile[j] = ScalarB(0);
}
// Clear accumulators
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < OutputTile::kH; ++j) {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < OutputTile::kW; ++i) {
accum[j][i] = initial_accum;
}
}
}
/// Computes a matrix product
CUTLASS_HOST_DEVICE
Gemm & multiply_add(
gemm::GemmCoord problem_size,
TensorRefA tensor_a,
TensorRefB tensor_b,
MatrixCoord output_coord = MatrixCoord()) {
// Loop over the GEMM K dimension
CUTLASS_PRAGMA_NO_UNROLL
for (int k = 0; k < problem_size.k(); ++k) {
// Fetch a slice of the A matrix
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < OutputTile::kW; ++i) {
if (output_coord.row() + i < problem_size.m()) {
A_tile[i] = tensor_a.at(make_Coord(output_coord.row() + i, k));
}
}
// Fetch a slice of the B matrix
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < OutputTile::kH; ++j) {
if (output_coord.column() + j < problem_size.n()) {
B_tile[j] = tensor_b.at(make_Coord(k, output_coord.column() + j));
}
}
// Compute an accumulated matrix product
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < OutputTile::kH; ++j) {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < OutputTile::kW; ++i) {
accum[j][i] = detail::inner_product(A_tile[i], B_tile[j], accum[j][i]);
}
}
}
return *this;
}
/// Performs linear scaling of matrix product and updates output tensor
__device__
Gemm & epilogue(
gemm::GemmCoord problem_size,
ScalarType alpha,
ScalarType beta,
TensorRefC tensor_c,
MatrixCoord output_coord = MatrixCoord()) {
// Update the output tensor
for (int j = 0; j < OutputTile::kH; ++j) {
for (int i = 0; i < OutputTile::kW; ++i) {
MatrixCoord coord = output_coord + MatrixCoord(i, j);
if (coord.row() < problem_size.m() && coord.column() < problem_size.n()) {
tensor_c.at(coord) = detail::Cast<ScalarType, ScalarC>::apply(
alpha * ScalarType(accum[j][i]) +
beta * ScalarType(tensor_c.at(coord))
);
}
}
}
return *this;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace device
} // namespace reference
} // namespace cutlass