cutlass/include/cutlass/gemm/device/gemm_universal_adapter.h
ANIKET SHIVAM f079619f5e
More updates for 3.1 (#958)
* Updates for 3.1

* Minor change

* doc link fix

* Minor updates
2023-05-24 10:17:16 -04:00

554 lines
21 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*!
\file
\brief The universal GEMM accommodates serial reductions, parallel reductions, batched strided, and
batched array variants.
*/
#pragma once
// common
#include "cutlass/cutlass.h"
#include "cutlass/trace.h"
#include "cutlass/cluster_launch.hpp"
#include "cutlass/device_kernel.h"
#include "cutlass/gemm/gemm.h"
// 2.x
#include "cutlass/gemm/device/gemm_universal_base.h"
#include "cutlass/gemm/kernel/gemm_transpose_operands.h"
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
// 3.x
#include "cutlass/gemm/kernel/gemm_universal.hpp"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass::gemm::device {
////////////////////////////////////////////////////////////////////////////////
/*!
GemmUniversalAdapter is a stateful, reusable GEMM handle built around a kernel
of type cutlass::gemm::kernel::Gemm or cutlass::gemm::kernel::GemmUniversal.
It manages the lifetime of the underlying `kernel::Params` struct, and exposes APIs
to create it from the host facing arguments. For power users, new static methods
are exposed in 3.x APIs that bypass the stateful methods or args->params lowering.
It supports kernel types that implement both the 2.x and 3.0 APIs,
however, this is done by specializing the implementation of GemmUniversalAdapter
on the two kernel API types, and thus, GemmUniversalAdapter's behaviour might
differ between the two specializations.
*/
template <class GemmKernel_, class Enable = void>
class GemmUniversalAdapter;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////// CUTLASS 3.x API /////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
template <class GemmKernel_>
class GemmUniversalAdapter<
GemmKernel_,
cute::enable_if_t<gemm::detail::IsCutlass3GemmKernel<GemmKernel_>::value>>
{
public:
using GemmKernel = GemmKernel_;
using TileShape = typename GemmKernel::TileShape;
using ElementA = typename GemmKernel::ElementA;
using ElementB = typename GemmKernel::ElementB;
using ElementC = typename GemmKernel::ElementC;
using ElementD = typename GemmKernel::ElementD;
using ElementAccumulator = typename GemmKernel::TiledMma::ValTypeC;
using DispatchPolicy = typename GemmKernel::DispatchPolicy;
using CollectiveMainloop = typename GemmKernel::CollectiveMainloop;
using CollectiveEpilogue = typename GemmKernel::CollectiveEpilogue;
// Map back to 2.x type as best as possible
using LayoutA = gemm::detail::StrideToLayoutTagA_t<typename GemmKernel::StrideA>;
using LayoutB = gemm::detail::StrideToLayoutTagB_t<typename GemmKernel::StrideB>;
using LayoutC = gemm::detail::StrideToLayoutTagC_t<typename GemmKernel::StrideC>;
using LayoutD = gemm::detail::StrideToLayoutTagC_t<typename GemmKernel::StrideD>;
// NOTE: 3.0 kernels do not support complex transforms for now ...
static ComplexTransform const kTransformA = ComplexTransform::kNone;
static ComplexTransform const kTransformB = ComplexTransform::kNone;
// Legacy: Assume MultiplyAdd only since we do not use this tag type in 3.0
using MathOperator = cutlass::arch::OpMultiplyAdd;
// If our TiledMMA's instruction thread layout size is larger than 1, we know its a tensorop!
using OperatorClass = cute::conditional_t<
(cute::size(typename GemmKernel::TiledMma::AtomThrID{}) > 1),
cutlass::arch::OpClassTensorOp, cutlass::arch::OpClassSimt>;
using ArchTag = typename GemmKernel::ArchTag;
// NOTE: Assume identity swizzle for now
static_assert(cute::is_void_v<typename GemmKernel::GridSwizzle>,
"CUTLASS 3.x kernel types do not support grid swizzle functors yet.");
using ThreadblockSwizzle = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
// Assume TiledMma's ShapeMNK is the same as 2.x's ThreadblockShape
using ThreadblockShape = cutlass::gemm::GemmShape<
cute::size<0>(TileShape{}),
cute::size<1>(TileShape{}),
cute::size<2>(TileShape{})>;
using ClusterShape = cutlass::gemm::GemmShape<
cute::size<0>(typename GemmKernel::DispatchPolicy::ClusterShape{}),
cute::size<1>(typename GemmKernel::DispatchPolicy::ClusterShape{}),
cute::size<2>(typename GemmKernel::DispatchPolicy::ClusterShape{})>;
// Instruction shape is easy too, since we get that directly from our TiledMma's atom shape
using InstructionShape = cutlass::gemm::GemmShape<
cute::size<0>(typename CollectiveMainloop::TiledMma::AtomShape_MNK{}),
cute::size<1>(typename CollectiveMainloop::TiledMma::AtomShape_MNK{}),
cute::size<2>(typename CollectiveMainloop::TiledMma::AtomShape_MNK{})>;
// Legacy: provide a correct warp count, but no reliable warp shape
static int const kThreadCount = GemmKernel::MaxThreadsPerBlock;
// Warp shape is not a primary API type in 3.x
// But we can best approximate it by inspecting the TiledMma::TiledShape_MNK
// For this, we make the assumption that we always have 4 warps along M, and rest along N, none along K
// We also always round up the warp count to 4 if the tiled mma is smaller than 128 threads
static constexpr int WarpsInMma = cute::max(4, cute::size(typename GemmKernel::TiledMma{}) / 32);
static constexpr int WarpsInMmaM = 4;
static constexpr int WarpsInMmaN = cute::ceil_div(WarpsInMma, WarpsInMmaM);
using WarpCount = cutlass::gemm::GemmShape<WarpsInMmaM, WarpsInMmaN, 1>;
using WarpShape = cutlass::gemm::GemmShape<
cute::size<0>(typename CollectiveMainloop::TiledMma::TiledShape_MNK{}) / WarpsInMmaM,
cute::size<1>(typename CollectiveMainloop::TiledMma::TiledShape_MNK{}) / WarpsInMmaN,
cute::size<2>(typename CollectiveMainloop::TiledMma::TiledShape_MNK{})>;
static int constexpr kStages = CollectiveMainloop::DispatchPolicy::Stages;
// Inspect TiledCopy for A and B to compute the alignment size
static int constexpr kAlignmentA = gemm::detail::get_alignment_count_from_gmem_tiled_copy<
typename CollectiveMainloop::GmemTiledCopyA, ElementA>();
static int constexpr kAlignmentB = gemm::detail::get_alignment_count_from_gmem_tiled_copy<
typename CollectiveMainloop::GmemTiledCopyB, ElementB>();
static int constexpr kAlignmentC = gemm::detail::get_alignment_count_from_gmem_tiled_copy<
typename CollectiveEpilogue::GmemTiledCopyC, ElementC>();
static int constexpr kAlignmentD = gemm::detail::get_alignment_count_from_gmem_tiled_copy<
typename CollectiveEpilogue::GmemTiledCopyD, ElementD>();
using EpilogueOutputOp = typename CollectiveEpilogue::ThreadEpilogueOp;
// Split-K preserves splits that are 128b aligned
static int constexpr kSplitKAlignment = cute::max(
128 / sizeof_bits<ElementA>::value, 128 / sizeof_bits<ElementB>::value);
/// Argument structure: User API
using Arguments = typename GemmKernel::Arguments;
/// Argument structure: Kernel API
using Params = typename GemmKernel::Params;
private:
/// Kernel API parameters object
Params params_;
public:
/// Determines whether the GEMM can execute the given problem.
static Status
can_implement(Arguments const& args) {
if (GemmKernel::can_implement(args)) {
return Status::kSuccess;
}
else {
return Status::kInvalid;
}
}
/// Gets the workspace size
static size_t
get_workspace_size(Arguments const& args) {
size_t workspace_bytes = 0;
if (args.mode == GemmUniversalMode::kGemmSplitKParallel) {
workspace_bytes += sizeof(int) * size_t(cute::size<0>(TileShape{})) * size_t(cute::size<1>(TileShape{}));
}
CUTLASS_TRACE_HOST(" workspace_bytes: " << workspace_bytes);
workspace_bytes += GemmKernel::get_workspace_size(args);
return workspace_bytes;
}
/// Computes the grid shape
static dim3
get_grid_shape(Arguments const& args, void* workspace = nullptr) {
auto tmp_params = GemmKernel::to_underlying_arguments(args, workspace);
return GemmKernel::get_grid_shape(tmp_params);
}
/// Computes the grid shape
static dim3
get_grid_shape(Params const& params) {
return GemmKernel::get_grid_shape(params);
}
/// Computes the maximum number of active blocks per multiprocessor
static int maximum_active_blocks(int /* smem_capacity */ = -1) {
CUTLASS_TRACE_HOST("GemmUniversal::maximum_active_blocks()");
int max_active_blocks = -1;
int smem_size = GemmKernel::SharedStorageSize;
// first, account for dynamic smem capacity if needed
cudaError_t result;
if (smem_size >= (48 << 10)) {
CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size);
result = cudaFuncSetAttribute(
device_kernel<GemmKernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(
" cudaFuncSetAttribute() returned error: "
<< cudaGetErrorString(result));
return -1;
}
}
// query occupancy after setting smem size
result = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&max_active_blocks,
device_kernel<GemmKernel>,
GemmKernel::MaxThreadsPerBlock,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(
" cudaOccupancyMaxActiveBlocksPerMultiprocessor() returned error: "
<< cudaGetErrorString(result));
return -1;
}
CUTLASS_TRACE_HOST(" max_active_blocks: " << max_active_blocks);
return max_active_blocks;
}
/// Initializes GEMM state from arguments.
Status
initialize(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
CUTLASS_TRACE_HOST("GemmUniversal::initialize() - workspace "
<< workspace << ", stream: " << (stream ? "non-null" : "null"));
size_t workspace_bytes = GemmKernel::get_workspace_size(args);
CUTLASS_TRACE_HOST(" workspace_bytes: " << workspace_bytes);
if (workspace_bytes) {
if (!workspace) {
CUTLASS_TRACE_HOST(" error: device workspace must not be null");
return Status::kErrorWorkspaceNull;
}
if (args.mode == GemmUniversalMode::kGemm) {
CUTLASS_TRACE_HOST(" clearing device workspace");
cudaError_t result = cudaMemsetAsync(workspace, 0, workspace_bytes, stream);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(" cudaMemsetAsync() returned error " << cudaGetErrorString(result));
return Status::kErrorInternal;
}
}
}
// Initialize the Params structure
params_ = GemmKernel::to_underlying_arguments(args, workspace);
// account for dynamic smem capacity if needed
int smem_size = GemmKernel::SharedStorageSize;
if (smem_size >= (48 << 10)) {
CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size);
cudaError_t result = cudaFuncSetAttribute(
device_kernel<GemmKernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(" cudaFuncSetAttribute() returned error: " << cudaGetErrorString(result));
return Status::kErrorInternal;
}
}
return Status::kSuccess;
}
/// Update API is preserved in 3.0, but does not guarantee a lightweight update of params.
Status
update(Arguments const& args, void* workspace = nullptr) {
CUTLASS_TRACE_HOST("GemmUniversal()::update() - workspace: " << workspace);
size_t workspace_bytes = get_workspace_size(args);
if (workspace_bytes > 0 && nullptr == workspace) {
return Status::kErrorWorkspaceNull;
}
params_ = GemmKernel::to_underlying_arguments(args, workspace);
return Status::kSuccess;
}
/// Primary run() entry point API that is static allowing users to create and manage their own params.
/// Supplied params struct must be construct by calling GemmKernel::to_underling_arguments()
static Status
run(Params& params, cudaStream_t stream = nullptr) {
CUTLASS_TRACE_HOST("GemmUniversal::run()");
dim3 const block = GemmKernel::get_block_shape();
dim3 const grid = get_grid_shape(params);
// configure smem size and carveout
int smem_size = GemmKernel::SharedStorageSize;
Status launch_result;
// Use extended launch API only for mainloops that use it
if constexpr(GemmKernel::ArchTag::kMinComputeCapability >= 90) {
dim3 cluster(cute::size<0>(typename GemmKernel::DispatchPolicy::ClusterShape{}),
cute::size<1>(typename GemmKernel::DispatchPolicy::ClusterShape{}),
cute::size<2>(typename GemmKernel::DispatchPolicy::ClusterShape{}));
void const* kernel = (void const*) device_kernel<GemmKernel>;
void* kernel_params[] = {&params};
launch_result = ClusterLauncher::launch(grid, cluster, block, smem_size, stream, kernel, kernel_params);
}
else {
launch_result = Status::kSuccess;
device_kernel<GemmKernel><<<grid, block, smem_size, stream>>>(params);
}
cudaError_t result = cudaGetLastError();
if (cudaSuccess == result && Status::kSuccess == launch_result) {
return Status::kSuccess;
}
else {
CUTLASS_TRACE_HOST(" Kernel launch failed. Reason: " << result);
return Status::kErrorInternal;
}
}
//
// Non-static launch overloads that first create and set the internal params struct of this kernel handle.
//
/// Launches the kernel after first constructing Params internal state from supplied arguments.
Status
run(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (Status::kSuccess == status) {
status = run(params_, stream);
}
return status;
}
/// Launches the kernel after first constructing Params internal state from supplied arguments.
Status
operator()(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
return run(args, workspace, stream);
}
/// Overload that allows a user to re-launch the same kernel without updating internal params struct.
Status
run(cudaStream_t stream = nullptr) {
return run(params_, stream);
}
/// Overload that allows a user to re-launch the same kernel without updating internal params struct.
Status
operator()(cudaStream_t stream = nullptr) {
return run(params_, stream);
}
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////// CUTLASS 2.x API /////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
template <typename GemmKernel_>
class GemmUniversalAdapter<
GemmKernel_,
cute::enable_if_t<not gemm::detail::IsCutlass3GemmKernel<GemmKernel_>::value>>
{
public:
using GemmKernel = GemmKernel_;
static bool const kInternalTranspose =
cute::is_same<typename GemmKernel::LayoutC, cutlass::layout::RowMajor>::value;
using ThreadblockShape = typename GemmKernel::Mma::Shape;
using WarpShape = typename GemmKernel::WarpShape;
using InstructionShape = typename GemmKernel::InstructionShape;
// warp-level, arch-level (instruction), math operator
using WarpMmaOperator = typename GemmKernel::Mma::Policy::Operator;
using ArchMmaOperator = typename WarpMmaOperator::ArchMmaOperator;
using MathOperator = typename WarpMmaOperator::MathOperator;
// Operator class and arch tag extract bottom-up
// set it for top-level gemm device-level template
using OperatorClass = typename WarpMmaOperator::OperatorClass;
using ArchTag = typename WarpMmaOperator::ArchTag;
// Type, layout, and complex transform deliberately exchanged with B
using MapArguments = kernel::detail::MapArguments<
typename GemmKernel::ElementA,
typename GemmKernel::LayoutA,
GemmKernel::kTransformA,
GemmKernel::kAlignmentA,
typename GemmKernel::ElementB,
typename GemmKernel::LayoutB,
GemmKernel::kTransformB,
GemmKernel::kAlignmentB,
typename GemmKernel::LayoutC,
kInternalTranspose
>;
using ElementA = typename MapArguments::ElementA;
using LayoutA = typename MapArguments::LayoutA;
static ComplexTransform const kTransformA = MapArguments::kTransformA;
static int const kAlignmentA = MapArguments::kAlignmentA;
using ElementB = typename MapArguments::ElementB;
using LayoutB = typename MapArguments::LayoutB;
static ComplexTransform const kTransformB = MapArguments::kTransformB;
static int const kAlignmentB = MapArguments::kAlignmentB;
using ElementC = typename GemmKernel::ElementC;
using LayoutC = typename MapArguments::LayoutC;
static int const kAlignmentC = GemmKernel::kAlignmentC;
// C and D same type for 2.x kernel
using ElementD = ElementC;
using LayoutD = LayoutC;
using TensorRefA = TensorRef<ElementA const, LayoutA>;
using TensorRefB = TensorRef<ElementB const, LayoutB>;
using TensorRefC = TensorRef<ElementC const, LayoutC>;
using TensorRefD = TensorRef<ElementD, LayoutD>;
static int const kStages = GemmKernel::Mma::kStages;
using EpilogueOutputOp = typename GemmKernel::EpilogueOutputOp;
using ElementAccumulator = typename EpilogueOutputOp::ElementAccumulator;
using ThreadblockSwizzle = typename GemmKernel::ThreadblockSwizzle;
using UnderlyingOperator = GemmUniversalBase<GemmKernel>;
using Arguments = typename UnderlyingOperator::Arguments;
private:
UnderlyingOperator underlying_operator_;
public:
/// Constructs the GEMM.
GemmUniversalAdapter() { }
/// Helper to construct a transposed equivalent for the underying GEMM operator
static Arguments to_underlying_arguments(Arguments const &args) {
if (kInternalTranspose) {
return args.transposed_problem();
}
else {
return args;
}
}
/// Determines whether the GEMM can execute the given problem.
static Status can_implement(Arguments const &args) {
return UnderlyingOperator::can_implement(to_underlying_arguments(args));
}
/// Gets the workspace size
static size_t get_workspace_size(Arguments const &args) {
return UnderlyingOperator::get_workspace_size(to_underlying_arguments(args));
}
/// Computes the grid shape
static dim3 get_grid_shape(Arguments const &args) {
return UnderlyingOperator::get_grid_shape(to_underlying_arguments(args));
}
/// Computes the maximum number of active blocks per multiprocessor
static int maximum_active_blocks(int smem_capacity = -1) {
return UnderlyingOperator::maximum_active_blocks(smem_capacity);
}
/// Initializes GEMM state from arguments.
Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {
return underlying_operator_.initialize(to_underlying_arguments(args), workspace, stream);
}
/// Lightweight update given a subset of arguments.
Status update(Arguments const &args) {
return underlying_operator_.update(to_underlying_arguments(args));
}
/// Runs the kernel using initialized state.
Status run(cudaStream_t stream = nullptr) {
return underlying_operator_.run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(cudaStream_t stream = nullptr) {
return run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (status == Status::kSuccess) {
status = run(stream);
}
return status;
}
};
////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::gemm::device
////////////////////////////////////////////////////////////////////////////////