616 lines
18 KiB
C++
616 lines
18 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
|
|
\brief Epilogue for threadblock scoped GEMMs using Tensor Ops.
|
|
|
|
The epilogue rearranges the result of a matrix product through shared memory to match canonical
|
|
tensor layouts in global memory. Epilogues support conversion and reduction operations.
|
|
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/numeric_types.h"
|
|
#include "cutlass/array.h"
|
|
#include "cutlass/layout/matrix.h"
|
|
#include "cutlass/layout/tensor.h"
|
|
#include "cutlass/matrix_shape.h"
|
|
#include "cutlass/tensor_ref.h"
|
|
#include "cutlass/transform/pitch_linear_thread_map.h"
|
|
#include "cutlass/epilogue/threadblock/output_tile_thread_map.h"
|
|
#include "cutlass/arch/arch.h"
|
|
#include "cutlass/arch/memory.h"
|
|
#include "cutlass/epilogue/threadblock/predicated_tile_iterator_params.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace epilogue {
|
|
namespace threadblock {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Tile iterator used to load and store output tile from global memory in epilogue.
|
|
///
|
|
/// Satisfies: ReadableTileIterator | PredicatedTileIterator | ForwardTileIterator
|
|
///
|
|
/// It provides a fast path for the case Rank = 2 which does not need div/rem to
|
|
/// calculate modes.
|
|
|
|
template <
|
|
typename ThreadMap_, ///< Thread map (conept: OutputTileThreadMap)
|
|
typename Element_, ///< Element data type
|
|
int Rank
|
|
>
|
|
class PredicatedTileIteratorAffineRankN {
|
|
public:
|
|
using ThreadMap = ThreadMap_;
|
|
using Shape = typename ThreadMap::Shape;
|
|
|
|
using Element = Element_;
|
|
|
|
using Layout = layout::AffineRankN<Rank>;
|
|
using TensorRef = TensorRef<Element, Layout>;
|
|
using TensorView = TensorView<Element, Layout>;
|
|
using ConstTensorRef = typename TensorRef::ConstTensorRef;
|
|
|
|
using Index = typename Layout::Index;
|
|
using LongIndex = typename Layout::LongIndex;
|
|
using TensorCoord = typename Layout::TensorCoord;
|
|
|
|
static int const kElementsPerAccess = ThreadMap::kElementsPerAccess;
|
|
static int const kThreads = ThreadMap::kThreads;
|
|
static int const kIterations = ThreadMap::Count::kTile;
|
|
|
|
static_assert( ThreadMap::Iterations::kRow > 0,"ThreadMap::Iterations::kRow must be > 0");
|
|
static_assert( ThreadMap::Iterations::kGroup > 0,"ThreadMap::Iterations::kGroup must be > 0");
|
|
static_assert( ThreadMap::Iterations::kCluster > 0,"ThreadMap::Iterations::kCluster must be > 0");
|
|
static_assert( ThreadMap::Iterations::kColumn > 0,"ThreadMap::Iterations::kColumn must be > 0");
|
|
static_assert( !(Layout::kRank % 2),
|
|
"Layout rank must be even. This assumes the first half of the modes correspond to the 'row' "
|
|
"and the second half of the modes correspond to the 'column'");
|
|
|
|
static bool const kBigEndian = false;
|
|
|
|
/// Fragment object
|
|
using Fragment = Array<
|
|
Element,
|
|
ThreadMap::Iterations::kColumn *
|
|
ThreadMap::Iterations::kRow *
|
|
ThreadMap::Iterations::kGroup *
|
|
ThreadMap::Iterations::kCluster * ThreadMap::kElementsPerAccess>;
|
|
|
|
/// Memory access size
|
|
using AccessType = AlignedArray<Element, ThreadMap::kElementsPerAccess>;
|
|
|
|
//
|
|
// Parameters struct
|
|
//
|
|
|
|
/// Parameters structure
|
|
struct Params {
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
Layout layout;
|
|
|
|
/// Stride in units of bytes along M modes
|
|
Coord<Layout::kRank/2, typename Layout::LongIndex> stride_m;
|
|
|
|
/// Stride in units of bytes along N modes
|
|
Coord<Layout::kRank/2, typename Layout::LongIndex> stride_n;
|
|
|
|
/// Fast divmod objects divided by tensor extents
|
|
FastDivmod divmod_m[(Layout::kRank == 2) ? 1 : (Layout::kRank/2 - 1)];
|
|
|
|
/// Fast divmod objects divided by tensor extents
|
|
FastDivmod divmod_n[(Layout::kRank == 2) ? 1 : (Layout::kRank/2 - 1)];
|
|
|
|
int64_t rank2_inc_col;
|
|
int64_t rank2_inc_row;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
CUTLASS_HOST_DEVICE
|
|
Params() { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(TensorCoord const &extent, Layout const &layout_): layout(layout_) {
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < Layout::kRank / 2; ++i) {
|
|
stride_m[i] = OffsetBytes<Element>(layout_.stride()[i]);
|
|
stride_n[i] = OffsetBytes<Element>(layout_.stride()[i + Layout::kRank / 2]);
|
|
}
|
|
|
|
if (kBigEndian) {
|
|
// "Big Endian" scheme
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < Layout::kRank / 2 - 1; ++i) {
|
|
divmod_m[i] = FastDivmod(extent[i + 1]);
|
|
divmod_n[i] = FastDivmod(extent[i + Layout::kRank / 2 + 1]);
|
|
}
|
|
}
|
|
else {
|
|
// "Little Endian" scheme
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < Layout::kRank / 2 - 1; ++i) {
|
|
divmod_m[i] = FastDivmod(extent[i]);
|
|
divmod_n[i] = FastDivmod(extent[i + Layout::kRank / 2]);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
//
|
|
// Debug print statements to verify extents and strides are passed correctly.
|
|
//
|
|
printf("PredicatedTileIteratorAffine::Params() entered\n");
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < Layout::kRank; ++i) {
|
|
printf(" extent[%d]: %d\n", i, extent[i]);
|
|
}
|
|
for (int i = 0; i < Layout::kRank; ++i) {
|
|
printf(" stride[%d]: %ld\n", i, layout_.stride()[i]);
|
|
}
|
|
printf("PredicatedTileIteratorAffine::Params() returning\n");
|
|
#endif
|
|
}
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(Layout const &layout_): layout(layout_) {
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < Layout::kRank / 2; ++i) {
|
|
stride_m[i] = OffsetBytes<Element>(layout_.stride()[i]);
|
|
stride_n[i] = OffsetBytes<Element>(layout_.stride()[i + Layout::kRank / 2]);
|
|
}
|
|
|
|
rank2_inc_col = ThreadMap::Delta::kColumn * stride_n[0];
|
|
rank2_inc_row = ThreadMap::Delta::kRow * stride_m[0];
|
|
}
|
|
};
|
|
|
|
/// Mask object
|
|
struct Mask {
|
|
|
|
static int const kCount = ThreadMap::Iterations::kColumn;
|
|
|
|
/// Predicate state
|
|
bool predicates[kCount];
|
|
|
|
//
|
|
// Mask
|
|
//
|
|
CUTLASS_HOST_DEVICE
|
|
Mask() {
|
|
enable();
|
|
}
|
|
|
|
///< Efficiently disables all accesses guarded by mask
|
|
CUTLASS_HOST_DEVICE void clear() {
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < kCount; ++i) {
|
|
predicates[i] = false;
|
|
}
|
|
}
|
|
|
|
///< CUTLASS_HOST_DEVICE enables all accesses guarded by mask
|
|
CUTLASS_DEVICE void enable() {
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int i = 0; i < kCount; ++i) {
|
|
predicates[i] = true;
|
|
}
|
|
}
|
|
};
|
|
|
|
private:
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
/// Parameters structure containing reference and precomputed state.
|
|
Params params_;
|
|
|
|
/// Byte-level pointer
|
|
uint8_t *byte_pointer_;
|
|
|
|
/// Array of boolean values to contain steady-state predicates
|
|
Mask mask_;
|
|
|
|
/// Extent of the matrix tile in rows
|
|
Index extent_row_;
|
|
|
|
/// Extent of the matrix tile in columns
|
|
Index extent_col_;
|
|
|
|
/// A thread's starting row position (assuming steady-state predicates have been computed)
|
|
Index thread_start_row_;
|
|
|
|
/// A thread's starting column position (assuming steady-state predicates have been computed)
|
|
Index thread_start_column_;
|
|
|
|
/// Internal state counter
|
|
int state_[3];
|
|
|
|
/// Offsets in columns, cached for performance
|
|
int64_t offset_modes_n_[ThreadMap::Iterations::kColumn];
|
|
|
|
//
|
|
// Static asserts about internal strides
|
|
//
|
|
|
|
static_assert(sizeof(extent_row_) == 4, "Expected 32b extents");
|
|
static_assert(sizeof(thread_start_row_) == 4, "Expected 32b extents");
|
|
|
|
private:
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
public:
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Constructor
|
|
CUTLASS_DEVICE
|
|
PredicatedTileIteratorAffineRankN(
|
|
Params const & params,
|
|
Element *pointer,
|
|
MatrixCoord extent,
|
|
int thread_idx,
|
|
MatrixCoord threadblock_offset = MatrixCoord(),
|
|
int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization
|
|
):
|
|
params_(params)
|
|
{
|
|
|
|
MatrixCoord thread_offset = ThreadMap::initial_offset(thread_idx) + threadblock_offset;
|
|
|
|
extent_row_ = extent.row();
|
|
extent_col_ = extent.column();
|
|
|
|
thread_start_row_ = thread_offset.row();
|
|
thread_start_column_ = thread_offset.column();
|
|
|
|
if (Layout::kRank > 2) {
|
|
// Initialize predicates
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int c = 0; c < ThreadMap::Iterations::kColumn; ++c) {
|
|
|
|
//
|
|
// Compute coordinate and decompose into N modes
|
|
//
|
|
|
|
int coord_n = thread_start_column_ + c * ThreadMap::Delta::kColumn;
|
|
|
|
mask_.predicates[c] = coord_n < extent.column();
|
|
|
|
Coord<Layout::kRank / 2, Index> modes_n;
|
|
|
|
int64_t offset_modes_n = 0;
|
|
|
|
if (kBigEndian) {
|
|
modes_n = CoordinateDecomposition<Layout::kRank / 2>(coord_n, params_.divmod_n);
|
|
|
|
offset_modes_n = dot(modes_n, params_.stride_n);
|
|
}
|
|
else {
|
|
modes_n = CoordinateDecompositionLittleEndian<Layout::kRank / 2>(coord_n, params_.divmod_n);
|
|
|
|
offset_modes_n = dot(modes_n, params_.stride_n);
|
|
}
|
|
|
|
offset_modes_n_[c] = offset_modes_n;
|
|
|
|
}
|
|
|
|
if (!pointer) {
|
|
mask_.clear();
|
|
}
|
|
}
|
|
|
|
// Initialize pointer
|
|
byte_pointer_ = reinterpret_cast<uint8_t *>(pointer);
|
|
|
|
// Initialize internal state counter
|
|
state_[0] = state_[1] = state_[2] = 0;
|
|
}
|
|
|
|
/// Adds a pointer offset in units of Element
|
|
CUTLASS_HOST_DEVICE
|
|
void add_pointer_offset(LongIndex pointer_offset) {
|
|
byte_pointer_ += pointer_offset * sizeof_bits<Element>::value / 8;
|
|
}
|
|
|
|
/// Loads a fragment from memory
|
|
CUTLASS_DEVICE
|
|
void load_with_byte_offset(Fragment &frag, int64_t byte_offset) {
|
|
uint8_t const *byte_pointer = byte_pointer_;
|
|
AccessType *frag_ptr = reinterpret_cast<AccessType *>(&frag);
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
|
|
|
int row_begin = thread_start_row_ + group * ThreadMap::Delta::kGroup + cluster * ThreadMap::Delta::kCluster;
|
|
int64_t offset_modes_m = row_begin * params_.stride_m[0];
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
|
|
|
int frag_row_idx =
|
|
(row + ThreadMap::Iterations::kRow * (group + ThreadMap::Iterations::kGroup * cluster));
|
|
|
|
//
|
|
// Compute coordinate and decompose into M modes
|
|
//
|
|
|
|
int coord_m = row * ThreadMap::Delta::kRow + row_begin;
|
|
|
|
Coord<Layout::kRank / 2, Index> modes_m;
|
|
|
|
if (Layout::kRank > 2) {
|
|
if (kBigEndian) {
|
|
modes_m = CoordinateDecomposition<Layout::kRank / 2>(coord_m, params_.divmod_m);
|
|
} else {
|
|
modes_m = CoordinateDecompositionLittleEndian<Layout::kRank / 2>(coord_m, params_.divmod_m);
|
|
}
|
|
|
|
offset_modes_m = dot(modes_m, params_.stride_m);
|
|
}
|
|
|
|
//
|
|
// Compute the offset due to modes M
|
|
//
|
|
|
|
bool row_guard = (coord_m < extent_row_);
|
|
int64_t offset_modes_n = thread_start_column_ * params_.stride_n[0];
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
|
|
|
//
|
|
// Compute coordinate and decompose into N modes
|
|
//
|
|
|
|
if (Layout::kRank > 2) {
|
|
offset_modes_n = offset_modes_n_[column];
|
|
}
|
|
|
|
//
|
|
// Compute the pointer and access
|
|
//
|
|
bool guard;
|
|
|
|
if (Layout::kRank > 2) {
|
|
guard = row_guard && mask_.predicates[column];
|
|
} else {
|
|
guard = (coord_m < extent_row_) &&
|
|
((thread_start_column_ + ThreadMap::Delta::kColumn * column) < extent_col_);
|
|
}
|
|
|
|
cutlass::arch::global_load<
|
|
AccessType,
|
|
sizeof(AccessType)
|
|
>(
|
|
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn + column],
|
|
(void *)(byte_pointer + offset_modes_m + offset_modes_n + byte_offset),
|
|
guard
|
|
);
|
|
|
|
if (Layout::kRank == 2) {
|
|
offset_modes_n += params_.rank2_inc_col;
|
|
}
|
|
}
|
|
|
|
if (Layout::kRank == 2) {
|
|
offset_modes_m += params_.rank2_inc_row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Loads a fragment from memory
|
|
CUTLASS_DEVICE
|
|
void load(Fragment &frag) {
|
|
|
|
load_with_byte_offset(frag, 0);
|
|
}
|
|
|
|
/// Stores a fragment to memory
|
|
CUTLASS_DEVICE
|
|
void store_with_byte_offset(Fragment const &frag, int64_t byte_offset) {
|
|
uint8_t *byte_pointer = byte_pointer_;
|
|
AccessType const *frag_ptr = reinterpret_cast<AccessType const *>(&frag);
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) {
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) {
|
|
|
|
int row_begin = thread_start_row_ + group * ThreadMap::Delta::kGroup + cluster * ThreadMap::Delta::kCluster;
|
|
int64_t offset_modes_m = row_begin * params_.stride_m[0];
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) {
|
|
|
|
int frag_row_idx =
|
|
(row + ThreadMap::Iterations::kRow * (group + ThreadMap::Iterations::kGroup * cluster));
|
|
|
|
//
|
|
// Compute coordinate and decompose into M modes
|
|
//
|
|
|
|
int coord_m = row * ThreadMap::Delta::kRow + row_begin;
|
|
|
|
Coord<Layout::kRank / 2, Index> modes_m;
|
|
|
|
if (Layout::kRank > 2) {
|
|
if (kBigEndian) {
|
|
modes_m = CoordinateDecomposition<Layout::kRank / 2>(coord_m, params_.divmod_m);
|
|
} else {
|
|
modes_m = CoordinateDecompositionLittleEndian<Layout::kRank / 2>(coord_m, params_.divmod_m);
|
|
}
|
|
|
|
offset_modes_m = dot(modes_m, params_.stride_m);
|
|
}
|
|
|
|
//
|
|
// Compute the offset due to modes M
|
|
//
|
|
|
|
bool row_guard = (coord_m < extent_row_);
|
|
int64_t offset_modes_n = thread_start_column_ * params_.stride_n[0];
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) {
|
|
|
|
//
|
|
// Compute coordinate and decompose into N modes
|
|
//
|
|
|
|
if (Layout::kRank > 2) {
|
|
offset_modes_n = offset_modes_n_[column];
|
|
}
|
|
|
|
//
|
|
// Compute the pointer and access
|
|
//
|
|
bool guard;
|
|
if (Layout::kRank > 2) {
|
|
guard = row_guard && mask_.predicates[column];
|
|
} else {
|
|
guard = (coord_m < extent_row_) && ((thread_start_column_ + ThreadMap::Delta::kColumn * column) < extent_col_);
|
|
}
|
|
|
|
cutlass::arch::global_store<AccessType, sizeof(AccessType)>(
|
|
frag_ptr[frag_row_idx * ThreadMap::Iterations::kColumn + column],
|
|
(void *)(byte_pointer + offset_modes_m + offset_modes_n + byte_offset),
|
|
guard);
|
|
|
|
if (Layout::kRank == 2) {
|
|
offset_modes_n += params_.rank2_inc_col;
|
|
}
|
|
}
|
|
|
|
if (Layout::kRank == 2) {
|
|
offset_modes_m += params_.rank2_inc_row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Stores a fragment to memory
|
|
CUTLASS_DEVICE
|
|
void store(Fragment const &frag) {
|
|
|
|
store_with_byte_offset(frag, 0);
|
|
}
|
|
|
|
/// Advances to the next position to load or store
|
|
CUTLASS_HOST_DEVICE
|
|
PredicatedTileIteratorAffineRankN &operator++() {
|
|
|
|
++state_[0];
|
|
thread_start_row_ += ThreadMap::Shape::kRow;
|
|
|
|
if (state_[0] == ThreadMap::Count::kRow) {
|
|
|
|
state_[0] = 0;
|
|
++state_[1];
|
|
|
|
thread_start_row_ += (ThreadMap::Shape::kGroup - 1) *
|
|
ThreadMap::Shape::kRow * ThreadMap::Count::kRow;
|
|
|
|
if (state_[1] == ThreadMap::Count::kGroup) {
|
|
|
|
state_[1] = 0;
|
|
++state_[2];
|
|
|
|
thread_start_row_ += ThreadMap::Count::kGroup *
|
|
ThreadMap::Shape::kGroup * ThreadMap::Count::kRow * ThreadMap::Shape::kRow;
|
|
|
|
if (state_[2] == ThreadMap::Count::kCluster) {
|
|
state_[2] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
///< Efficiently disables all accesses guarded by mask
|
|
CUTLASS_DEVICE void clear_mask() {
|
|
mask_.clear();
|
|
}
|
|
|
|
///< Efficiently enables all accesses guarded by mask
|
|
CUTLASS_DEVICE void enable_mask() {
|
|
mask_.enable();
|
|
}
|
|
|
|
///< Sets the mask
|
|
CUTLASS_DEVICE void get_mask(Mask &mask) {
|
|
mask = mask_;
|
|
}
|
|
|
|
///< Sets the mask
|
|
CUTLASS_DEVICE void set_mask(Mask const &mask) {
|
|
mask_ = mask;
|
|
}
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace threadblock
|
|
} // namespace epilogue
|
|
} // namespace cutlass
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|