
CUTLASS 2.0 Substantially refactored for - Better performance, particularly for native Turing Tensor Cores - Robust and durable templates spanning the design space - Encapsulated functionality embodying modern C++11 programming techniques - Optimized containers and data types for efficient, generic, portable device code Updates to: - Quick start guide - Documentation - Utilities - CUTLASS Profiler Native Turing Tensor Cores - Efficient GEMM kernels targeting Turing Tensor Cores - Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands Coverage of existing CUTLASS functionality: - GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs - Volta Tensor Cores through native mma.sync and through WMMA API - Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions - Batched GEMM operations - Complex-valued GEMMs Note: this commit and all that follow require a host compiler supporting C++11 or greater.
7.4 KiB
README > Quick Start
Quickstart
Prerequisites
CUTLASS requires:
- NVIDIA CUDA Toolkit (9.2 or later required, 10.2 recommended)
- CMake 3.12+
- host compiler supporting C++11 or greater (g++ 7.3.0 or Microsoft Visual Studio 2015 recommended)
- Python 3.5+
Initial build steps
Construct a build directory and run CMake.
$ export CUDACXX=${CUDA_INSTALL_PATH}/bin/nvcc
$ mkdir build && cd build
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 # compiles for NVIDIA's Turing GPU architecture
Clang
For experimental purposes, CUTLASS may be compiled with clang 8.0 using the CUDA 10.0 Toolkit. At this time, compiling with clang enables the CUTLASS SIMT GEMM kernels (sgemm, dgemm, hgemm, igemm) but does not enable TensorCores.
$ mkdir build && cd build
$ cmake -DCUDA_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
$ make test_unit -j
Build and run the CUTLASS Profiler
From the build/
directory created above, compile the the CUTLASS Profiler.
$ make cutlass_profiler -j12
Then execute the CUTLASS Profiler for a set of problem sizes.
$ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=4352 --n=4096 --k=4096
=============================
Problem ID: 1
Provider: CUTLASS
Operation: cutlass_simt_sgemm_128x128_nn
Disposition: Passed
Status: Success
Arguments: --m=4352 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 \
--split_k_slices=1 --batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 \
--stages=2 --warps_m=2 --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 \
--max_cc=1024
Bytes: 52428800 bytes
FLOPs: 146064539648 flops
Runtime: 10.5424 ms
Memory: 4.63158 GiB/s
Math: 13854.9 GFLOP/s
See documentation for the CUTLASS Profiler for more details.
Build and run CUTLASS Unit Tests
From the build/
directory created above, simply build the target test_unit
to compile and run
all unit tests.
$ make test_unit -j
...
...
...
[----------] Global test environment tear-down
[==========] 946 tests from 57 test cases ran. (10812 ms total)
[ PASSED ] 946 tests.
$
No tests should fail.
Using CUTLASS within other applications
Applications should list /include
within their include paths. They must be
compiled as C++11 or greater.
Example: print the contents of a variable storing half-precision data.
#include <iostream>
#include <cutlass/cutlass.h>
#include <cutlass/numeric_types.h>
int main() {
cutlass::half_t x = 2.25_hf;
std::cout << x << std::endl;
return 0;
}
Launching a GEMM kernel
Example: launch a mixed-precision GEMM targeting Volta Tensor Cores.
#include <cutlass/numeric_types.h>
#include <cutlas/gemm/device/gemm.h>
#include <cutlass/util/host_tensor.h>
int main() {
// Define the GEMM operation
using Gemm = cutlass::gemm::device::Gemm<
cutlass::half_t, // ElementA
cutlass::layout::ColumnMajor, // LayoutA
cutlass::half_t, // ElementB
cutlass::layout::ColumnMajor, // LayoutB
cutlass::half_t, // ElementOutput
cutlass::layout::ColumnMajor, // LayoutOutput
float, // ElementAccumulator
cutlass::arch::OpClassTensorOp, // tag indicating Tensor Cores
cutlass::arch::Sm70 // tag indicating target GPU compute architecture
>;
Gemm gemm_op;
cutlass::Status status;
//
// Define the problem size
//
int M = 512;
int N = 256;
int K = 128;
float alpha = 1.25f;
float beta = -1.25f;
//
// Allocate device memory
//
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> C({M, N});
cutlass::half_t const *ptrA = A.device_data();
cutlass::half_t const *ptrB = B.device_data();
cutlass::half_t const *ptrC = C.device_data();
cutlass::half_t *ptrD = C.device_data();
int lda = A.device_ref().stride(0);
int ldb = B.device_ref().stride(0);
int ldc = C.device_ref().stride(0);
int ldd = D.device_ref().stride(0);
//
// Launch GEMM on the device
//
status = gemm_op({
{M, N, K},
{ptrA, lda}, // TensorRef to A device tensor
{ptrB, ldb}, // TensorRef to B device tensor
{ptrC, ldc}, // TensorRef to C device tensor
{ptrD, ldd}, // TensorRef to D device tensor - may be the same as C
{alpha, beta} // epilogue operation arguments
});
if (status != cutlass::Status::kSuccess) {
return -1;
}
return 0;
}
Note, the above could be simplified as follows using helper methods defined in HostTensor
.
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> C({M, N});
//
// Use the TensorRef returned by HostTensor::device_ref().
//
status = gemm_op({
{M, N, K},
A.device_ref(), // TensorRef to A device tensor
B.device_ref(), // TensorRef to B device tensor
C.device_ref(), // TensorRef to C device tensor
C.device_ref(), // TensorRef to D device tensor - may be the same as C
{alpha, beta} // epilogue operation arguments
});
Copyright
Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
* Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.