cutlass/include/cutlass/gemm/kernel/gemm_planar_complex_array.h
2023-03-20 17:07:47 -04:00

618 lines
18 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/fast_math.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/complex.h"
#include "cutlass/semaphore.h"
#include "cutlass/gemm/kernel/params_universal_base.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate
typename Epilogue_, ///! Epilogue
typename ThreadblockSwizzle_ ///! Threadblock swizzling function
>
struct GemmPlanarComplexArray {
public:
using Mma = Mma_;
using Epilogue = Epilogue_;
using EpilogueOutputOp = typename Epilogue::OutputOp;
using ThreadblockSwizzle = ThreadblockSwizzle_;
using ElementA = typename Mma::IteratorA::Element;
using LayoutA = typename Mma::IteratorA::Layout;
using ElementB = typename Mma::IteratorB::Element;
using LayoutB = typename Mma::IteratorB::Layout;
using ElementC = typename Epilogue::OutputTileIterator::Element;
using LayoutC = typename Epilogue::OutputTileIterator::Layout;
using Operator = typename Mma::Operator;
using ArchTag = typename Mma::ArchTag;
static ComplexTransform const kTransformA = Mma::kTransformA;
static ComplexTransform const kTransformB = Mma::kTransformB;
/// Warp count (concept: GemmShape)
using WarpCount = typename Mma::WarpCount;
static int const kThreadCount = 32 * WarpCount::kCount;
/// Split-K preserves splits that are 128b aligned
static int const kSplitKAlignment = const_max(
128 / sizeof_bits<ElementA>::value,
128 / sizeof_bits<ElementB>::value);
//
// Additional types needed for reflection
//
using ElementAccumulator = typename Mma::Policy::Operator::ElementC;
using OperatorClass = typename Mma::Operator::OperatorClass;
using ThreadblockShape = typename Mma::Shape;
using WarpShape = typename Mma::Operator::Shape;
using InstructionShape = typename Mma::Policy::Operator::Shape;
static int const kStages = Mma::kStages;
static int const kAlignmentA = Mma::IteratorA::AccessType::kElements;
static int const kAlignmentB = Mma::IteratorB::AccessType::kElements;
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
//
// Arguments structure
//
/// Argument structure
struct Arguments : UniversalArgumentsBase
{
//
// Data members
//
typename EpilogueOutputOp::Params epilogue;
int const *ptr_M;
int const *ptr_N;
int const *ptr_K;
void const * const * ptr_A_real;
void const * const * ptr_A_imag;
void const * const * ptr_B_real;
void const * const * ptr_B_imag;
void const * const * ptr_C_real;
void const * const * ptr_C_imag;
void * const * ptr_D_real;
void * const * ptr_D_imag;
typename LayoutA::Stride::Index lda_real;
typename LayoutA::Stride::Index lda_imag;
typename LayoutB::Stride::Index ldb_real;
typename LayoutB::Stride::Index ldb_imag;
typename LayoutC::Stride::Index ldc_real;
typename LayoutC::Stride::Index ldc_imag;
typename LayoutC::Stride::Index ldd_real;
typename LayoutC::Stride::Index ldd_imag;
//
// Methods
//
Arguments():
ptr_M(nullptr),
ptr_N(nullptr),
ptr_K(nullptr),
ptr_A_real(nullptr),
ptr_A_imag(nullptr),
ptr_B_real(nullptr),
ptr_B_imag(nullptr),
ptr_C_real(nullptr),
ptr_C_imag(nullptr),
ptr_D_real(nullptr),
ptr_D_imag(nullptr)
{}
/// constructs an arguments structure
Arguments(
GemmCoord problem_size,
int batch_count,
typename EpilogueOutputOp::Params epilogue,
int const *ptr_M,
int const *ptr_N,
int const *ptr_K,
void const * const * ptr_A_real,
void const * const * ptr_A_imag,
void const * const * ptr_B_real,
void const * const * ptr_B_imag,
void const * const * ptr_C_real,
void const * const * ptr_C_imag,
void * const * ptr_D_real,
void * const * ptr_D_imag,
typename LayoutA::Stride::Index lda_real,
typename LayoutA::Stride::Index lda_imag,
typename LayoutB::Stride::Index ldb_real,
typename LayoutB::Stride::Index ldb_imag,
typename LayoutC::Stride::Index ldc_real,
typename LayoutC::Stride::Index ldc_imag,
typename LayoutC::Stride::Index ldd_real,
typename LayoutC::Stride::Index ldd_imag)
:
UniversalArgumentsBase(mode, problem_size, batch_count, batch_stride_D),
epilogue(epilogue),
ptr_M(ptr_M),
ptr_N(ptr_N),
ptr_K(ptr_K),
ptr_A_real(ptr_A_real),
ptr_A_imag(ptr_A_imag),
ptr_B_real(ptr_B_real),
ptr_B_imag(ptr_B_imag),
ptr_C_real(ptr_C_real),
ptr_C_imag(ptr_C_imag),
ptr_D_real(ptr_D_real),
ptr_D_imag(ptr_D_imag),
lda_real(lda_real),
lda_imag(lda_imag),
ldb_real(ldb_real),
ldb_imag(ldb_imag),
ldc_real(ldc_real),
ldc_imag(ldc_imag),
ldd_real(ldd_real),
ldd_imag(ldd_imag)
{}
/// Returns arguments for the transposed problem
Arguments transposed_problem() const {
Arguments args(*this);
std::swap(args.problem_size.m(), args.problem_size.n());
std::swap(args.ptr_M, args.ptr_N);
std::swap(args.ptr_A_real, args.ptr_B_real);
std::swap(args.ptr_A_imag, args.ptr_B_imag);
std::swap(args.lda_real, args.ldb_real);
std::swap(args.lda_imag, args.ldb_imag);
return args;
}
};
//
// Structure for precomputing values in host memory and passing to kernels
//
/// Parameters structure
struct Params : UniversalParamsBase<
ThreadblockSwizzle,
ThreadblockShape,
ElementA,
ElementB,
ElementC>
{
using ParamsBase = UniversalParamsBase<
ThreadblockSwizzle,
ThreadblockShape,
ElementA,
ElementB,
ElementC>;
//
// Data members
//
typename Mma::IteratorA::Params params_A_real;
typename Mma::IteratorA::Params params_A_imag;
typename Mma::IteratorB::Params params_B_real;
typename Mma::IteratorB::Params params_B_imag;
typename Epilogue::OutputTileIterator::Params params_C_real;
typename Epilogue::OutputTileIterator::Params params_C_imag;
typename Epilogue::OutputTileIterator::Params params_D_real;
typename Epilogue::OutputTileIterator::Params params_D_imag;
typename EpilogueOutputOp::Params output_op;
int const *ptr_M;
int const *ptr_N;
int const *ptr_K;
void const * const * ptr_A_real;
void const * const * ptr_A_imag;
void const * const * ptr_B_real;
void const * const * ptr_B_imag;
void const * const * ptr_C_real;
void const * const * ptr_C_imag;
void * const * ptr_D_real;
void * const * ptr_D_imag;
//
// Host dispatch API
//
/// Default constructor
Params() = default;
/// Constructor
Params(
Arguments const &args, /// GEMM application arguments
int device_sms, /// Number of SMs on the device
int sm_occupancy) /// Kernel SM occupancy (in thread blocks)
:
ParamsBase(args, device_sms, sm_occupancy),
ptr_M(args.ptr_M),
ptr_N(args.ptr_N),
ptr_K(args.ptr_K),
params_A_real(args.lda_real),
params_A_imag(args.lda_imag),
params_B_real(args.ldb_real),
params_B_imag(args.ldb_imag),
params_C_real(args.ldc_real),
params_C_imag(args.ldc_imag),
params_D_real(args.ldd_real),
params_D_imag(args.ldd_imag),
output_op(args.epilogue),
ptr_A_real(args.ptr_A_real),
ptr_A_imag(args.ptr_A_imag),
ptr_B_real(args.ptr_B_real),
ptr_B_imag(args.ptr_B_imag),
ptr_C_real(args.ptr_C_real),
ptr_C_imag(args.ptr_C_imag),
ptr_D_real(args.ptr_D_real),
ptr_D_imag(args.ptr_D_imag)
{}
/// Lightweight update given a subset of arguments.
void update(Arguments const &args)
{
ptr_M = args.ptr_M;
ptr_N = args.ptr_N;
ptr_K = args.ptr_K;
ptr_A_real = args.ptr_A_real;
ptr_A_imag = args.ptr_A_imag;
ptr_B_real = args.ptr_B_real;
ptr_B_imag = args.ptr_B_imag;
ptr_C_real = args.ptr_C_real;
ptr_C_imag = args.ptr_C_imag;
ptr_D_real = args.ptr_D_real;
ptr_D_imag = args.ptr_D_imag;
output_op = args.epilogue;
}
};
/// Shared memory storage structure
union SharedStorage {
typename Mma::SharedStorage main_loop;
typename Epilogue::SharedStorage epilogue;
};
public:
//
// Host dispatch API
//
/// Determines whether kernel satisfies alignment
static Status can_implement(Arguments const &args) {
static int const kAlignmentA = Mma::IteratorA::AccessType::kElements;
static int const kAlignmentB = Mma::IteratorB::AccessType::kElements;
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
bool isAMisaligned = false;
bool isBMisaligned = false;
bool isCMisaligned = false;
if (platform::is_same<LayoutA, layout::RowMajor>::value) {
isAMisaligned = args.problem_size.k() % kAlignmentA;
} else if (platform::is_same<LayoutA, layout::ColumnMajor>::value) {
isAMisaligned = args.problem_size.m() % kAlignmentA;
}
if (platform::is_same<LayoutB, layout::RowMajor>::value) {
isBMisaligned = args.problem_size.n() % kAlignmentB;
} else if (platform::is_same<LayoutB, layout::ColumnMajor>::value) {
isBMisaligned = args.problem_size.k() % kAlignmentB;
}
if (platform::is_same<LayoutC, layout::RowMajor>::value) {
isCMisaligned = args.problem_size.n() % kAlignmentC;
} else if (platform::is_same<LayoutC, layout::ColumnMajor>::value) {
isCMisaligned = args.problem_size.m() % kAlignmentC;
}
if (isAMisaligned || isBMisaligned || isCMisaligned) {
return Status::kErrorMisalignedOperand;
}
return Status::kSuccess;
}
public:
//
// Device-only API
//
// Factory invocation
CUTLASS_DEVICE
static void invoke(
Params const &params,
SharedStorage &shared_storage)
{
GemmPlanarComplexArray op;
op(params, shared_storage);
}
/// Executes one GEMM
CUTLASS_DEVICE
void operator()(Params const &params, SharedStorage &shared_storage) {
// Compute threadblock location
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord threadblock_tile_offset =
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
// Early exit if CTA is out of range
if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||
params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {
return;
}
int batch_idx = threadblock_tile_offset.k();
int problem_size_m = params.problem_size.m();
int problem_size_n = params.problem_size.n();
int problem_size_k = params.problem_size.k();
ElementA *ptr_A_real = static_cast<ElementA *>(const_cast<void *>(params.ptr_A_real[batch_idx]));
ElementA *ptr_A_imag = static_cast<ElementA *>(const_cast<void *>(params.ptr_A_imag[batch_idx]));
ElementB *ptr_B_real = static_cast<ElementB *>(const_cast<void *>(params.ptr_B_real[batch_idx]));
ElementB *ptr_B_imag = static_cast<ElementB *>(const_cast<void *>(params.ptr_B_imag[batch_idx]));
//
// If pointers for problem sizes are specified, these are loaded from global memory
//
if (params.ptr_M) {
problem_size_m = params.ptr_M[batch_idx];
}
if (params.ptr_N) {
problem_size_n = params.ptr_N[batch_idx];
}
if (params.ptr_K) {
problem_size_k = params.ptr_K[batch_idx];
}
int const kBlockCountM = (problem_size_m + Mma::Shape::kM - 1) / Mma::Shape::kM;
int const kBlockCountN = (problem_size_n + Mma::Shape::kN - 1) / Mma::Shape::kN;
int const kGemmKIterations = (problem_size_k + Mma::Shape::kK - 1) / Mma::Shape::kK;
//
// Each threadblock loops over the logical problem size which the kernel may have discovered
// after the grid is launched.
//
CUTLASS_PRAGMA_NO_UNROLL
for (int block_m = threadblock_tile_offset.m();
block_m < kBlockCountM;
block_m += params.grid_tiled_shape.m()) {
CUTLASS_PRAGMA_NO_UNROLL
for (int block_n = threadblock_tile_offset.n();
block_n < kBlockCountN;
block_n += params.grid_tiled_shape.n()) {
//
// Compute indices within threadblock and warp.
//
int thread_idx = threadIdx.x;
// Broadcast the warp_id computed by lane 0 to ensure dependent code
// is compiled as warp-uniform.
int warp_idx = canonical_warp_idx();
int lane_idx = threadIdx.x % 32;
//
// Proceed with regular GEMM logic.
//
// Compute initial location in logical coordinates
cutlass::MatrixCoord tb_offset_A{ block_m * Mma::Shape::kM, 0};
cutlass::MatrixCoord tb_offset_B{ 0, block_n * Mma::Shape::kN };
// Construct iterators to A and B operands
typename Mma::IteratorA iterator_A_real(
params.params_A_real,
ptr_A_real,
{problem_size_m, problem_size_k},
thread_idx,
tb_offset_A);
typename Mma::IteratorA iterator_A_imag(
params.params_A_imag,
ptr_A_imag,
{problem_size_m, problem_size_k},
thread_idx,
tb_offset_A);
typename Mma::IteratorB iterator_B_real(
params.params_B_real,
ptr_B_real,
{problem_size_k, problem_size_n},
thread_idx,
tb_offset_B);
typename Mma::IteratorB iterator_B_imag(
params.params_B_imag,
ptr_B_imag,
{problem_size_k, problem_size_n},
thread_idx,
tb_offset_B);
//
// Main loop
//
// Construct thread-scoped matrix multiply
Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);
typename Mma::FragmentC accumulators;
accumulators.clear();
// Compute threadblock-scoped matrix multiply-add
mma(
kGemmKIterations,
accumulators,
iterator_A_real,
iterator_A_imag,
iterator_B_real,
iterator_B_imag,
accumulators);
//
// Epilogue
//
EpilogueOutputOp output_op(params.output_op);
//
// Masked tile iterators constructed from members
//
//assume identity swizzle
MatrixCoord threadblock_offset(
block_m * Mma::Shape::kM,
block_n * Mma::Shape::kN
);
ElementC *ptr_C_real = static_cast<ElementC *>(const_cast<void *>(params.ptr_C_real[batch_idx]));
ElementC *ptr_C_imag = static_cast<ElementC *>(const_cast<void *>(params.ptr_C_imag[batch_idx]));
ElementC *ptr_D_real = static_cast<ElementC *>(params.ptr_D_real[batch_idx]);
ElementC *ptr_D_imag = static_cast<ElementC *>(params.ptr_D_imag[batch_idx]);
// Tile iterator loading from source tensor.
typename Epilogue::OutputTileIterator iterator_C_real(
params.params_C_real,
ptr_C_real,
{problem_size_m, problem_size_n},
thread_idx,
threadblock_offset
);
typename Epilogue::OutputTileIterator iterator_C_imag(
params.params_C_imag,
ptr_C_imag,
{problem_size_m, problem_size_n},
thread_idx,
threadblock_offset
);
// Tile iterator writing to destination tensor.
typename Epilogue::OutputTileIterator iterator_D_real(
params.params_D_real,
ptr_D_real,
{problem_size_m, problem_size_n},
thread_idx,
threadblock_offset
);
typename Epilogue::OutputTileIterator iterator_D_imag(
params.params_D_imag,
ptr_D_imag,
{problem_size_m, problem_size_n},
thread_idx,
threadblock_offset
);
//
// Construct epilogue
//
Epilogue epilogue(
shared_storage.epilogue,
thread_idx,
warp_idx,
lane_idx);
// Execute the epilogue operator to update the destination tensor.
epilogue(
output_op,
iterator_D_real,
iterator_D_imag,
accumulators,
iterator_C_real,
iterator_C_imag);
} // for block_n
} // for block_m
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////