
* New updates. * Minor profiler updates Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
831 lines
28 KiB
C++
831 lines
28 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
/*! \file
|
|
\brief Template for a Block-Ell sparse gemm kernel.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
|
|
#include "cutlass/gemm/gemm.h"
|
|
#include "cutlass/matrix_coord.h"
|
|
#include "cutlass/semaphore.h"
|
|
#include "cutlass/arch/arch.h"
|
|
|
|
#include "cutlass/transform/threadblock/ell_iterator.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace gemm {
|
|
namespace kernel {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <
|
|
typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate
|
|
typename Epilogue_, ///! Epilogue
|
|
typename ThreadblockSwizzle_, ///! Threadblock swizzling function
|
|
bool SplitKSerial, ///! If true, code supporting split-K via serial reduction is enabled.
|
|
bool IsASparse ///! If true, A is sparse matrix
|
|
>
|
|
struct EllGemm {
|
|
|
|
using Mma = Mma_;
|
|
using Epilogue = Epilogue_;
|
|
using OutputOp = typename Epilogue::OutputOp;
|
|
using ThreadblockSwizzle = ThreadblockSwizzle_;
|
|
static bool const kSplitKSerial = SplitKSerial;
|
|
|
|
/// Warp count (concept: GemmShape)
|
|
using WarpCount = typename Mma::WarpCount;
|
|
static int const kThreadCount = 32 * WarpCount::kCount;
|
|
|
|
/// Parameters structure
|
|
struct Params {
|
|
cutlass::gemm::GemmCoord problem_size;
|
|
cutlass::gemm::GemmCoord grid_tiled_shape;
|
|
int swizzle_log_tile;
|
|
typename Mma::IteratorA::Params params_A;
|
|
typename Mma::IteratorA::TensorRef ref_A;
|
|
typename Mma::IteratorB::Params params_B;
|
|
typename Mma::IteratorB::TensorRef ref_B;
|
|
typename Epilogue::OutputTileIterator::Params params_C;
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_C;
|
|
typename Epilogue::OutputTileIterator::Params params_D;
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_D;
|
|
typename OutputOp::Params output_op;
|
|
int *semaphore;
|
|
int gemm_k_iterations;
|
|
int gemm_k_size;
|
|
const int* ell_idx;
|
|
int ell_ncol;
|
|
int ell_blocksize;
|
|
int ell_base_idx;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(): swizzle_log_tile(0), semaphore(0), gemm_k_iterations(0), gemm_k_size(0) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
cutlass::gemm::GemmCoord const & problem_size,
|
|
cutlass::gemm::GemmCoord const & grid_tiled_shape,
|
|
typename Mma::IteratorA::TensorRef ref_A,
|
|
typename Mma::IteratorB::TensorRef ref_B,
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_C,
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_D,
|
|
const int* ell_idx,
|
|
int ell_ncol,
|
|
int ell_blocksize,
|
|
int ell_base_idx,
|
|
typename OutputOp::Params output_op = typename OutputOp::Params(),
|
|
int *workspace = nullptr
|
|
):
|
|
problem_size(problem_size),
|
|
grid_tiled_shape(grid_tiled_shape),
|
|
swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)),
|
|
params_A(ref_A.layout()),
|
|
ref_A(ref_A),
|
|
params_B(ref_B.layout()),
|
|
ref_B(ref_B),
|
|
params_C(ref_C.layout()),
|
|
ref_C(ref_C),
|
|
params_D(ref_D.layout()),
|
|
ref_D(ref_D),
|
|
output_op(output_op),
|
|
ell_idx(ell_idx),
|
|
ell_ncol(ell_ncol),
|
|
ell_blocksize(ell_blocksize),
|
|
ell_base_idx(ell_base_idx)
|
|
{
|
|
|
|
int total_gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK;
|
|
int gemm_k_iterations = (total_gemm_k_iterations + grid_tiled_shape.k() - 1) / grid_tiled_shape.k();
|
|
|
|
gemm_k_size = gemm_k_iterations * Mma::Shape::kK;
|
|
|
|
semaphore = workspace;
|
|
}
|
|
};
|
|
|
|
/// Shared memory storage structure
|
|
struct SharedStorage {
|
|
union{
|
|
typename Mma::SharedStorage main_loop;
|
|
typename Epilogue::SharedStorage epilogue;
|
|
};
|
|
typename cutlass::transform::threadblock::ell::SharedStorage ell;
|
|
};
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
EllGemm() { }
|
|
|
|
/// Determines whether kernel satisfies alignment
|
|
static Status can_implement(
|
|
cutlass::gemm::GemmCoord const & problem_size,
|
|
typename Mma::IteratorA::TensorRef ref_A,
|
|
typename Mma::IteratorB::TensorRef ref_B,
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_C,
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_D) {
|
|
|
|
static int const kAlignmentA = (platform::is_same<typename Mma::IteratorA::Layout,
|
|
layout::ColumnMajorInterleaved<32>>::value)
|
|
? 32
|
|
: (platform::is_same<typename Mma::IteratorA::Layout,
|
|
layout::ColumnMajorInterleaved<64>>::value)
|
|
? 64
|
|
: Mma::IteratorA::AccessType::kElements;
|
|
static int const kAlignmentB = (platform::is_same<typename Mma::IteratorB::Layout,
|
|
layout::RowMajorInterleaved<32>>::value)
|
|
? 32
|
|
: (platform::is_same<typename Mma::IteratorB::Layout,
|
|
layout::RowMajorInterleaved<64>>::value)
|
|
? 64
|
|
: Mma::IteratorB::AccessType::kElements;
|
|
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
|
|
|
|
if (!TensorRef_aligned(ref_A, kAlignmentA)) {
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
if (!TensorRef_aligned(ref_B, kAlignmentB)) {
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
if (!TensorRef_aligned(ref_C, kAlignmentC)) {
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
if (!TensorRef_aligned(ref_D, kAlignmentC)) {
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
if ((problem_size.m() % kAlignmentA) || (problem_size.k() % kAlignmentA) ||
|
|
(problem_size.n() % kAlignmentB) || (problem_size.k() % kAlignmentB) ||
|
|
(problem_size.m() % kAlignmentC) || (problem_size.n() % kAlignmentC)) {
|
|
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
return Status::kSuccess;
|
|
}
|
|
|
|
/// Executes one GEMM
|
|
CUTLASS_DEVICE
|
|
void operator()(Params const ¶ms, SharedStorage &shared_storage) {
|
|
|
|
// Compute threadblock location
|
|
ThreadblockSwizzle threadblock_swizzle;
|
|
|
|
cutlass::gemm::GemmCoord threadblock_tile_offset =
|
|
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
|
|
|
|
// Early exit if CTA is out of range
|
|
if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||
|
|
params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {
|
|
|
|
return;
|
|
}
|
|
|
|
int tile_in_ell_block = (params.ell_blocksize + Mma::Shape::kM - 1 ) / Mma::Shape::kM;
|
|
int ell_block_offset_m = threadblock_tile_offset.m() / tile_in_ell_block;
|
|
int tile_offset_m = threadblock_tile_offset.m() % tile_in_ell_block;
|
|
|
|
// Compute position within threadblock
|
|
int thread_idx = threadIdx.x;
|
|
|
|
// Broadcast the warp_id computed by lane 0 to ensure dependent code
|
|
// is compiled as warp-uniform.
|
|
int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
|
|
int lane_idx = threadIdx.x % 32;
|
|
|
|
typename Mma::FragmentC accumulators;
|
|
|
|
accumulators.clear();
|
|
|
|
// skip computation if matrix is 0
|
|
if (params.ell_ncol > 0) {
|
|
|
|
// Compute initial location in logical coordinates
|
|
cutlass::MatrixCoord tb_offset_A{
|
|
ell_block_offset_m * params.ell_blocksize
|
|
+ tile_offset_m * Mma::Shape::kM,
|
|
threadblock_tile_offset.k() * params.gemm_k_size
|
|
};
|
|
|
|
cutlass::MatrixCoord tb_offset_B{
|
|
threadblock_tile_offset.k() * params.gemm_k_size,
|
|
threadblock_tile_offset.n() * Mma::Shape::kN
|
|
};
|
|
|
|
int ell_idx_start =
|
|
(threadblock_tile_offset.m() / tile_in_ell_block) *
|
|
(params.ell_ncol / params.ell_blocksize);
|
|
const int* ell_idx_ptr = &(params.ell_idx[ell_idx_start]);
|
|
|
|
// Problem size is a function of threadblock index in the K dimension
|
|
int problem_size_k = min(
|
|
params.problem_size.k(),
|
|
(threadblock_tile_offset.k() + 1) * params.gemm_k_size);
|
|
problem_size_k = min(problem_size_k, params.ell_ncol);
|
|
|
|
// Compute threadblock-scoped matrix multiply-add
|
|
int gemm_k_iterations =
|
|
(problem_size_k - tb_offset_A.column() + Mma::Shape::kK - 1) / Mma::Shape::kK;
|
|
|
|
// Construct iterators to A and B operands
|
|
typename Mma::IteratorA iterator_A(
|
|
params.params_A,
|
|
params.ref_A.data(),
|
|
{params.problem_size.m(), problem_size_k},
|
|
thread_idx,
|
|
tb_offset_A);
|
|
|
|
typename Mma::IteratorB iterator_B(
|
|
params.params_B,
|
|
params.ref_B.data(),
|
|
{problem_size_k, params.problem_size.n()},
|
|
thread_idx,
|
|
tb_offset_B);
|
|
|
|
// Define coef for ELL index depending on LayoutB
|
|
int ell_stride = iterator_B.get_stride();
|
|
|
|
typename cutlass::transform::threadblock::ell::Iterator ell_iterator(
|
|
shared_storage.ell,
|
|
ell_idx_ptr,
|
|
params.ell_blocksize,
|
|
params.ell_base_idx,
|
|
Mma::Shape::kK,
|
|
problem_size_k,
|
|
ell_stride,
|
|
thread_idx
|
|
);
|
|
|
|
//
|
|
// Main loop
|
|
//
|
|
|
|
// Construct thread-scoped matrix multiply
|
|
Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);
|
|
|
|
if (!kSplitKSerial || gemm_k_iterations > 0) {
|
|
// check if index computations can be skipped
|
|
static int const kAlignmentA = Mma::IteratorA::AccessType::kElements;
|
|
static int const kAlignmentB = Mma::IteratorB::AccessType::kElements;
|
|
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
|
|
constexpr bool is_double = (sizeof(Mma::IteratorA::Element) == 8);
|
|
constexpr bool is_multiple_alignment =
|
|
(kAlignmentA > 1) && (kAlignmentB > 1) && (kAlignmentC > 1);
|
|
const bool is_specialized_blocksize =
|
|
((params.ell_blocksize) & (params.ell_blocksize-1)) == 0
|
|
&& params.ell_blocksize >= Mma::Shape::kK;
|
|
// Compute threadblock-scoped matrix multiply-add
|
|
if ((is_double || is_multiple_alignment) && is_specialized_blocksize) {
|
|
mma.operator()<true, true>(
|
|
gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators, ell_iterator);
|
|
}
|
|
else {
|
|
mma.operator()<true, false>(
|
|
gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators, ell_iterator);
|
|
}
|
|
}
|
|
} // if (params.ell_ncols > 0)
|
|
|
|
//
|
|
// Epilogue
|
|
//
|
|
|
|
OutputOp output_op(params.output_op);
|
|
|
|
//
|
|
// Masked tile iterators constructed from members
|
|
//
|
|
|
|
threadblock_tile_offset =
|
|
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
|
|
|
|
ell_block_offset_m = threadblock_tile_offset.m() / tile_in_ell_block;
|
|
tile_offset_m = threadblock_tile_offset.m() % tile_in_ell_block;
|
|
|
|
//assume identity swizzle
|
|
MatrixCoord threadblock_offset(
|
|
ell_block_offset_m * params.ell_blocksize
|
|
+ tile_offset_m * Mma::Shape::kM,
|
|
threadblock_tile_offset.n() * Mma::Shape::kN
|
|
);
|
|
|
|
//avoid out of bounds
|
|
MatrixCoord threadblock_extent(
|
|
min(params.problem_size.m(),
|
|
ell_block_offset_m * params.ell_blocksize
|
|
+ min((tile_offset_m + 1) * Mma::Shape::kM, params.ell_blocksize)),
|
|
min(params.problem_size.n(),
|
|
(threadblock_tile_offset.n()+1) * Mma::Shape::kN)
|
|
);
|
|
|
|
int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m();
|
|
|
|
// Construct the semaphore.
|
|
Semaphore semaphore(params.semaphore + block_idx, thread_idx);
|
|
|
|
// If performing a reduction via split-K, fetch the initial synchronization
|
|
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
|
|
|
// Fetch the synchronization lock initially but do not block.
|
|
semaphore.fetch();
|
|
|
|
// Indicate which position in a serial reduction the output operator is currently updating
|
|
output_op.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k());
|
|
}
|
|
|
|
// Tile iterator loading from source tensor.
|
|
typename Epilogue::OutputTileIterator iterator_C(
|
|
params.params_C,
|
|
params.ref_C.data(),
|
|
threadblock_extent,
|
|
thread_idx,
|
|
threadblock_offset
|
|
);
|
|
|
|
// Tile iterator writing to destination tensor.
|
|
typename Epilogue::OutputTileIterator iterator_D(
|
|
params.params_D,
|
|
params.ref_D.data(),
|
|
threadblock_extent,
|
|
thread_idx,
|
|
threadblock_offset
|
|
);
|
|
|
|
Epilogue epilogue(
|
|
shared_storage.epilogue,
|
|
thread_idx,
|
|
warp_idx,
|
|
lane_idx);
|
|
|
|
// Wait on the semaphore - this latency may have been covered by iterator construction
|
|
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
|
|
|
// For subsequent threadblocks, the source matrix is held in the 'D' tensor.
|
|
if (threadblock_tile_offset.k()) {
|
|
iterator_C = iterator_D;
|
|
}
|
|
|
|
semaphore.wait(threadblock_tile_offset.k());
|
|
}
|
|
|
|
// Execute the epilogue operator to update the destination tensor.
|
|
epilogue(output_op, iterator_D, accumulators, iterator_C);
|
|
|
|
//
|
|
// Release the semaphore
|
|
//
|
|
|
|
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
|
|
|
int lock = 0;
|
|
if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) {
|
|
|
|
// The final threadblock resets the semaphore for subsequent grids.
|
|
lock = 0;
|
|
}
|
|
else {
|
|
// Otherwise, the semaphore is incremented
|
|
lock = threadblock_tile_offset.k() + 1;
|
|
}
|
|
|
|
semaphore.release(lock);
|
|
}
|
|
}
|
|
};
|
|
|
|
// B is Sparse
|
|
template <
|
|
typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate
|
|
typename Epilogue_, ///! Epilogue
|
|
typename ThreadblockSwizzle_, ///! Threadblock swizzling function
|
|
bool SplitKSerial ///! If true, code supporting split-K via serial reduction is enabled.
|
|
>
|
|
struct EllGemm<Mma_, Epilogue_, ThreadblockSwizzle_, SplitKSerial, false> {
|
|
|
|
using Mma = Mma_;
|
|
using Epilogue = Epilogue_;
|
|
using OutputOp = typename Epilogue::OutputOp;
|
|
using ThreadblockSwizzle = ThreadblockSwizzle_;
|
|
static bool const kSplitKSerial = SplitKSerial;
|
|
|
|
/// Warp count (concept: GemmShape)
|
|
using WarpCount = typename Mma::WarpCount;
|
|
static int const kThreadCount = 32 * WarpCount::kCount;
|
|
|
|
/// Parameters structure
|
|
struct Params {
|
|
cutlass::gemm::GemmCoord problem_size;
|
|
cutlass::gemm::GemmCoord grid_tiled_shape;
|
|
int swizzle_log_tile;
|
|
typename Mma::IteratorA::Params params_A;
|
|
typename Mma::IteratorA::TensorRef ref_A;
|
|
typename Mma::IteratorB::Params params_B;
|
|
typename Mma::IteratorB::TensorRef ref_B;
|
|
typename Epilogue::OutputTileIterator::Params params_C;
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_C;
|
|
typename Epilogue::OutputTileIterator::Params params_D;
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_D;
|
|
typename OutputOp::Params output_op;
|
|
int *semaphore;
|
|
int gemm_k_iterations;
|
|
int gemm_k_size;
|
|
const int* ell_idx;
|
|
int ell_ncol;
|
|
int ell_blocksize;
|
|
int ell_base_idx;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(): swizzle_log_tile(0), semaphore(0), gemm_k_iterations(0), gemm_k_size(0) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
cutlass::gemm::GemmCoord const & problem_size,
|
|
cutlass::gemm::GemmCoord const & grid_tiled_shape,
|
|
typename Mma::IteratorA::TensorRef ref_A,
|
|
typename Mma::IteratorB::TensorRef ref_B,
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_C,
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_D,
|
|
const int* ell_idx,
|
|
int ell_ncol,
|
|
int ell_blocksize,
|
|
int ell_base_idx,
|
|
typename OutputOp::Params output_op = typename OutputOp::Params(),
|
|
int *workspace = nullptr
|
|
):
|
|
problem_size(problem_size),
|
|
grid_tiled_shape(grid_tiled_shape),
|
|
swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)),
|
|
params_A(ref_A.layout()),
|
|
ref_A(ref_A),
|
|
params_B(ref_B.layout()),
|
|
ref_B(ref_B),
|
|
params_C(ref_C.layout()),
|
|
ref_C(ref_C),
|
|
params_D(ref_D.layout()),
|
|
ref_D(ref_D),
|
|
output_op(output_op),
|
|
ell_idx(ell_idx),
|
|
ell_ncol(ell_ncol),
|
|
ell_blocksize(ell_blocksize),
|
|
ell_base_idx(ell_base_idx)
|
|
{
|
|
|
|
int total_gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK;
|
|
int gemm_k_iterations = (total_gemm_k_iterations + grid_tiled_shape.k() - 1) / grid_tiled_shape.k();
|
|
|
|
gemm_k_size = gemm_k_iterations * Mma::Shape::kK;
|
|
|
|
semaphore = workspace;
|
|
}
|
|
};
|
|
|
|
/// Shared memory storage structure
|
|
struct SharedStorage {
|
|
union{
|
|
typename Mma::SharedStorage main_loop;
|
|
typename Epilogue::SharedStorage epilogue;
|
|
};
|
|
typename cutlass::transform::threadblock::ell::SharedStorage ell;
|
|
};
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
EllGemm() { }
|
|
|
|
/// Determines whether kernel satisfies alignment
|
|
static Status can_implement(
|
|
cutlass::gemm::GemmCoord const & problem_size,
|
|
typename Mma::IteratorA::TensorRef ref_A,
|
|
typename Mma::IteratorB::TensorRef ref_B,
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_C,
|
|
typename Epilogue::OutputTileIterator::TensorRef ref_D) {
|
|
|
|
static int const kAlignmentA = (platform::is_same<typename Mma::IteratorA::Layout,
|
|
layout::ColumnMajorInterleaved<32>>::value)
|
|
? 32
|
|
: (platform::is_same<typename Mma::IteratorA::Layout,
|
|
layout::ColumnMajorInterleaved<64>>::value)
|
|
? 64
|
|
: Mma::IteratorA::AccessType::kElements;
|
|
static int const kAlignmentB = (platform::is_same<typename Mma::IteratorB::Layout,
|
|
layout::RowMajorInterleaved<32>>::value)
|
|
? 32
|
|
: (platform::is_same<typename Mma::IteratorB::Layout,
|
|
layout::RowMajorInterleaved<64>>::value)
|
|
? 64
|
|
: Mma::IteratorB::AccessType::kElements;
|
|
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
|
|
|
|
if (!TensorRef_aligned(ref_A, kAlignmentA)) {
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
if (!TensorRef_aligned(ref_B, kAlignmentB)) {
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
if (!TensorRef_aligned(ref_C, kAlignmentC)) {
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
if (!TensorRef_aligned(ref_D, kAlignmentC)) {
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
if ((problem_size.m() % kAlignmentA) || (problem_size.k() % kAlignmentA) ||
|
|
(problem_size.n() % kAlignmentB) || (problem_size.k() % kAlignmentB) ||
|
|
(problem_size.m() % kAlignmentC) || (problem_size.n() % kAlignmentC)) {
|
|
|
|
return Status::kErrorMisalignedOperand;
|
|
}
|
|
|
|
return Status::kSuccess;
|
|
}
|
|
|
|
/// Executes one GEMM
|
|
CUTLASS_DEVICE
|
|
void operator()(Params const ¶ms, SharedStorage &shared_storage) {
|
|
|
|
// Compute threadblock location
|
|
ThreadblockSwizzle threadblock_swizzle;
|
|
|
|
cutlass::gemm::GemmCoord threadblock_tile_offset =
|
|
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
|
|
|
|
// Early exit if CTA is out of range
|
|
if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||
|
|
params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {
|
|
|
|
return;
|
|
}
|
|
|
|
int tile_in_ell_block = (params.ell_blocksize + Mma::Shape::kN - 1 ) / Mma::Shape::kN;
|
|
int ell_block_offset_n = threadblock_tile_offset.n() / tile_in_ell_block;
|
|
int tile_offset_n = threadblock_tile_offset.n() % tile_in_ell_block;
|
|
|
|
// Compute position within threadblock
|
|
int thread_idx = threadIdx.x;
|
|
|
|
// Broadcast the warp_id computed by lane 0 to ensure dependent code
|
|
// is compiled as warp-uniform.
|
|
int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
|
|
int lane_idx = threadIdx.x % 32;
|
|
|
|
typename Mma::FragmentC accumulators;
|
|
|
|
accumulators.clear();
|
|
|
|
// skip computation if matrix is 0
|
|
if (params.ell_ncol > 0) {
|
|
|
|
// Compute initial location in logical coordinates
|
|
cutlass::MatrixCoord tb_offset_A{
|
|
threadblock_tile_offset.m() * Mma::Shape::kM,
|
|
threadblock_tile_offset.k() * params.gemm_k_size,
|
|
};
|
|
|
|
cutlass::MatrixCoord tb_offset_B{
|
|
threadblock_tile_offset.k() * params.gemm_k_size,
|
|
ell_block_offset_n * params.ell_blocksize
|
|
+ tile_offset_n * Mma::Shape::kN,
|
|
};
|
|
|
|
int ell_idx_start =
|
|
(threadblock_tile_offset.n() / tile_in_ell_block) *
|
|
(params.ell_ncol / params.ell_blocksize);
|
|
const int* ell_idx_ptr = &(params.ell_idx[ell_idx_start]);
|
|
|
|
// Problem size is a function of threadblock index in the K dimension
|
|
int problem_size_k = min(
|
|
params.problem_size.k(),
|
|
(threadblock_tile_offset.k() + 1) * params.gemm_k_size);
|
|
problem_size_k = min(problem_size_k, params.ell_ncol);
|
|
|
|
// Compute threadblock-scoped matrix multiply-add
|
|
int gemm_k_iterations =
|
|
(problem_size_k - tb_offset_A.column() + Mma::Shape::kK - 1) / Mma::Shape::kK;
|
|
|
|
// Construct iterators to A and B operands
|
|
typename Mma::IteratorA iterator_A(
|
|
params.params_A,
|
|
params.ref_A.data(),
|
|
{params.problem_size.m(), problem_size_k},
|
|
thread_idx,
|
|
tb_offset_A);
|
|
|
|
typename Mma::IteratorB iterator_B(
|
|
params.params_B,
|
|
params.ref_B.data(),
|
|
{problem_size_k, params.problem_size.n()},
|
|
thread_idx,
|
|
tb_offset_B);
|
|
|
|
// Define coef for ELL index depending on LayoutA
|
|
int ell_stride = iterator_A.get_stride();
|
|
|
|
typename cutlass::transform::threadblock::ell::Iterator ell_iterator(
|
|
shared_storage.ell,
|
|
ell_idx_ptr,
|
|
params.ell_blocksize,
|
|
params.ell_base_idx,
|
|
Mma::Shape::kK,
|
|
problem_size_k,
|
|
ell_stride,
|
|
thread_idx
|
|
);
|
|
|
|
//
|
|
// Main loop
|
|
//
|
|
|
|
// Construct thread-scoped matrix multiply
|
|
Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);
|
|
|
|
if (!kSplitKSerial || gemm_k_iterations > 0) {
|
|
// check if index computations can be skipped
|
|
static int const kAlignmentA = Mma::IteratorA::AccessType::kElements;
|
|
static int const kAlignmentB = Mma::IteratorB::AccessType::kElements;
|
|
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
|
|
constexpr bool is_double = (sizeof(Mma::IteratorA::Element) == 8);
|
|
constexpr bool is_multiple_alignment =
|
|
(kAlignmentA > 1) && (kAlignmentB > 1) && (kAlignmentC > 1);
|
|
const bool is_specialized_blocksize =
|
|
((params.ell_blocksize) & (params.ell_blocksize-1)) == 0
|
|
&& params.ell_blocksize >= Mma::Shape::kK;
|
|
// Compute threadblock-scoped matrix multiply-add
|
|
if ((is_double || is_multiple_alignment) && is_specialized_blocksize) {
|
|
mma.operator()<false, true>(
|
|
gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators, ell_iterator);
|
|
}
|
|
else {
|
|
mma.operator()<false, false>(
|
|
gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators, ell_iterator);
|
|
}
|
|
}
|
|
} // if (params.ell_ncols > 0)
|
|
|
|
//
|
|
// Epilogue
|
|
//
|
|
|
|
OutputOp output_op(params.output_op);
|
|
|
|
//
|
|
// Masked tile iterators constructed from members
|
|
//
|
|
|
|
threadblock_tile_offset =
|
|
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
|
|
|
|
ell_block_offset_n = threadblock_tile_offset.n() / tile_in_ell_block;
|
|
tile_offset_n = threadblock_tile_offset.n() % tile_in_ell_block;
|
|
|
|
//assume identity swizzle
|
|
MatrixCoord threadblock_offset(
|
|
threadblock_tile_offset.m() * Mma::Shape::kM,
|
|
ell_block_offset_n * params.ell_blocksize
|
|
+ tile_offset_n * Mma::Shape::kN
|
|
);
|
|
|
|
//avoid out of bounds
|
|
MatrixCoord threadblock_extent(
|
|
min(params.problem_size.m(),
|
|
(threadblock_tile_offset.m()+1) * Mma::Shape::kM),
|
|
min(params.problem_size.n(),
|
|
ell_block_offset_n * params.ell_blocksize
|
|
+ min((tile_offset_n + 1) * Mma::Shape::kN, params.ell_blocksize))
|
|
);
|
|
|
|
int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m();
|
|
|
|
// Construct the semaphore.
|
|
Semaphore semaphore(params.semaphore + block_idx, thread_idx);
|
|
|
|
// If performing a reduction via split-K, fetch the initial synchronization
|
|
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
|
|
|
// Fetch the synchronization lock initially but do not block.
|
|
semaphore.fetch();
|
|
|
|
// Indicate which position in a serial reduction the output operator is currently updating
|
|
output_op.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k());
|
|
}
|
|
|
|
// Tile iterator loading from source tensor.
|
|
typename Epilogue::OutputTileIterator iterator_C(
|
|
params.params_C,
|
|
params.ref_C.data(),
|
|
threadblock_extent,
|
|
thread_idx,
|
|
threadblock_offset
|
|
);
|
|
|
|
// Tile iterator writing to destination tensor.
|
|
typename Epilogue::OutputTileIterator iterator_D(
|
|
params.params_D,
|
|
params.ref_D.data(),
|
|
threadblock_extent,
|
|
thread_idx,
|
|
threadblock_offset
|
|
);
|
|
|
|
Epilogue epilogue(
|
|
shared_storage.epilogue,
|
|
thread_idx,
|
|
warp_idx,
|
|
lane_idx);
|
|
|
|
// Wait on the semaphore - this latency may have been covered by iterator construction
|
|
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
|
|
|
// For subsequent threadblocks, the source matrix is held in the 'D' tensor.
|
|
if (threadblock_tile_offset.k()) {
|
|
iterator_C = iterator_D;
|
|
}
|
|
|
|
semaphore.wait(threadblock_tile_offset.k());
|
|
}
|
|
|
|
// Execute the epilogue operator to update the destination tensor.
|
|
epilogue(output_op, iterator_D, accumulators, iterator_C);
|
|
|
|
//
|
|
// Release the semaphore
|
|
//
|
|
|
|
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
|
|
|
int lock = 0;
|
|
if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) {
|
|
|
|
// The final threadblock resets the semaphore for subsequent grids.
|
|
lock = 0;
|
|
}
|
|
else {
|
|
// Otherwise, the semaphore is incremented
|
|
lock = threadblock_tile_offset.k() + 1;
|
|
}
|
|
|
|
semaphore.release(lock);
|
|
}
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace kernel
|
|
} // namespace gemm
|
|
} // namespace cutlass
|
|
|