
CUTLASS 2.0 Substantially refactored for - Better performance, particularly for native Turing Tensor Cores - Robust and durable templates spanning the design space - Encapsulated functionality embodying modern C++11 programming techniques - Optimized containers and data types for efficient, generic, portable device code Updates to: - Quick start guide - Documentation - Utilities - CUTLASS Profiler Native Turing Tensor Cores - Efficient GEMM kernels targeting Turing Tensor Cores - Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands Coverage of existing CUTLASS functionality: - GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs - Volta Tensor Cores through native mma.sync and through WMMA API - Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions - Batched GEMM operations - Complex-valued GEMMs Note: this commit and all that follow require a host compiler supporting C++11 or greater.
94 lines
4.5 KiB
Plaintext
94 lines
4.5 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
/*! \file
|
|
\brief CUTLASS layout visualization example
|
|
*/
|
|
|
|
#include <map>
|
|
#include <memory>
|
|
|
|
#include "cutlass/layout/matrix.h"
|
|
#include "cutlass/layout/pitch_linear.h"
|
|
#include "cutlass/layout/tensor_op_multiplicand_sm70.h"
|
|
#include "cutlass/layout/tensor_op_multiplicand_sm75.h"
|
|
#include "visualize_layout.h"
|
|
#include "register_layout.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void RegisterLayouts(std::map<std::string, std::unique_ptr<VisualizeLayoutBase> > &layouts) {
|
|
|
|
struct {
|
|
char const *name;
|
|
VisualizeLayoutBase *ptr;
|
|
} layout_pairs[] = {
|
|
|
|
{"PitchLinear", new VisualizeLayout<cutlass::layout::PitchLinear>},
|
|
{"ColumnMajor", new VisualizeLayout<cutlass::layout::ColumnMajor>},
|
|
{"RowMajor", new VisualizeLayout<cutlass::layout::RowMajor>},
|
|
{"ColumnMajorInterleaved<4>",
|
|
new VisualizeLayout<cutlass::layout::ColumnMajorInterleaved<4>>},
|
|
{"RowMajorInterleaved<4>",
|
|
new VisualizeLayout<cutlass::layout::RowMajorInterleaved<4>>},
|
|
// Integer matrix multiply.int4 8832 Interleaved-64
|
|
{"TensorOpMultiplicand<4,64>",
|
|
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<4, 64>>},
|
|
// Integer matrix multiply.int4 8832 TN kblock128
|
|
{"TensorOpMultiplicand<4,128>",
|
|
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<4, 128>>},
|
|
// Integer matrix multiply 8816 Interleaved-32
|
|
{"TensorOpMultiplicand<8,32>",
|
|
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<8, 32>>},
|
|
// Integer matrix multiply 8816 TN kblock64
|
|
{"TensorOpMultiplicand<8,64>",
|
|
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<8, 64>>},
|
|
// Matrix Multiply 1688 TN kblock32
|
|
{"TensorOpMultiplicand<16,32>",
|
|
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<16, 32>>},
|
|
// Matrix multiply 1688 NT
|
|
{"TensorOpMultiplicand<16,64>",
|
|
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<16, 64>>},
|
|
{"TensorOpMultiplicandCongruous<128,4>",
|
|
new VisualizeLayout<
|
|
cutlass::layout::TensorOpMultiplicandCongruous<128, 4>>},
|
|
{"TensorOpMultiplicandCrosswise<128,4>",
|
|
new VisualizeLayout<
|
|
cutlass::layout::TensorOpMultiplicandCrosswise<128, 4>>},
|
|
{"VoltaTensorOpMultiplicandCongruous<16>",
|
|
new VisualizeLayout<
|
|
cutlass::layout::VoltaTensorOpMultiplicandCongruous<16>>},
|
|
{"VoltaTensorOpMultiplicandCrosswise<16,32>",
|
|
new VisualizeLayout<
|
|
cutlass::layout::VoltaTensorOpMultiplicandCrosswise<16, 32>>},
|
|
};
|
|
|
|
for (auto layout : layout_pairs) {
|
|
layouts.emplace(std::string(layout.name), std::unique_ptr<VisualizeLayoutBase>(layout.ptr));
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|