
CUTLASS 2.0 Substantially refactored for - Better performance, particularly for native Turing Tensor Cores - Robust and durable templates spanning the design space - Encapsulated functionality embodying modern C++11 programming techniques - Optimized containers and data types for efficient, generic, portable device code Updates to: - Quick start guide - Documentation - Utilities - CUTLASS Profiler Native Turing Tensor Cores - Efficient GEMM kernels targeting Turing Tensor Cores - Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands Coverage of existing CUTLASS functionality: - GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs - Volta Tensor Cores through native mma.sync and through WMMA API - Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions - Batched GEMM operations - Complex-valued GEMMs Note: this commit and all that follow require a host compiler supporting C++11 or greater.
126 lines
5.0 KiB
C++
126 lines
5.0 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Matrix multiply
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <assert.h>
|
|
#include "cutlass/layout/matrix.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
namespace cutlass {
|
|
namespace arch {
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// WMMA template structure defines nvcuda::wmma::fragments and static assert for
|
|
// wmma native instruction sizes supported for half
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <
|
|
typename Shape_,
|
|
typename LayoutA_,
|
|
typename LayoutB_,
|
|
typename ElementC_,
|
|
typename LayoutC_>
|
|
struct Wmma<
|
|
Shape_, ///< Size of the matrix product (concept: GemmShape)
|
|
cutlass::half_t, ///< ElementA
|
|
LayoutA_, ///< LayoutA
|
|
cutlass::half_t, ///< ElementB
|
|
LayoutB_, ///< LayoutB
|
|
ElementC_, ///< ElementC
|
|
LayoutC_, ///< LayoutC
|
|
cutlass::arch::OpMultiplyAdd ///< Operator (multiply-add, xor.popc)
|
|
> {
|
|
|
|
#if defined(CUTLASS_ARCH_WMMA_SM70_ENABLED)
|
|
using Shape = Shape_;
|
|
using ElementA = cutlass::half_t;
|
|
using LayoutA = LayoutA_;
|
|
using ElementB = cutlass::half_t;
|
|
using LayoutB = LayoutB_;
|
|
using ElementC = ElementC_;
|
|
using LayoutC = LayoutC_;
|
|
using Operator = cutlass::arch::OpMultiplyAdd;
|
|
|
|
// check supported wmma shape for the given multiplicand data types
|
|
static_assert(
|
|
platform::is_same<cutlass::gemm::GemmShape<16, 16, 16>, Shape>::value ||
|
|
platform::is_same<cutlass::gemm::GemmShape< 8, 32, 16>, Shape>::value ||
|
|
platform::is_same<cutlass::gemm::GemmShape<32, 8, 16>, Shape>::value,
|
|
"Supported list of wmma operator shape for f16 multiplicands are: 16x16x16, 8x328x16, and 32x8x16");
|
|
|
|
// check supported wmma output data type for the given multiplicand data types
|
|
static_assert(
|
|
platform::is_same<cutlass::half_t, ElementC>::value || platform::is_same<float, ElementC>::value,
|
|
"Supported of wmma output data type for f16 multiplicands are: f16 and f32");
|
|
|
|
// Wmma Fragment
|
|
using FragmentA = nvcuda::wmma::fragment<
|
|
nvcuda::wmma::matrix_a,
|
|
Shape::kM,
|
|
Shape::kN,
|
|
Shape::kK,
|
|
typename CutlassToWmmaDataType<ElementA>::Type,
|
|
typename CutlassToWmmaLayout<LayoutA>::Layout>;
|
|
|
|
using FragmentB = nvcuda::wmma::fragment<
|
|
nvcuda::wmma::matrix_b,
|
|
Shape::kM,
|
|
Shape::kN,
|
|
Shape::kK,
|
|
typename CutlassToWmmaDataType<ElementB>::Type,
|
|
typename CutlassToWmmaLayout<LayoutB>::Layout>;
|
|
|
|
using FragmentC = nvcuda::wmma::fragment<
|
|
nvcuda::wmma::accumulator,
|
|
Shape::kM,
|
|
Shape::kN,
|
|
Shape::kK,
|
|
typename CutlassToWmmaDataType<ElementC>::Type>;
|
|
|
|
/// Performs a nvcuda::wmma matrix multiply-accumulate operation
|
|
CUTLASS_DEVICE
|
|
void operator()(
|
|
FragmentC &D,
|
|
FragmentA const &A,
|
|
FragmentB const &B,
|
|
FragmentC const &C) const {
|
|
|
|
nvcuda::wmma::mma_sync(D, A, B, C);
|
|
}
|
|
#else
|
|
static_assert(false, "wmma.mma.sync for floating point multiplicands is avialable only for SM70 and beyond");
|
|
#endif
|
|
|
|
};
|
|
|
|
} // namespace arch
|
|
} // namespace cutlass
|