cutlass/include/cutlass/arch/wmma_sm70.h
Andrew Kerr fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00

126 lines
5.0 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Matrix multiply
*/
#pragma once
#include <assert.h>
#include "cutlass/layout/matrix.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace arch {
////////////////////////////////////////////////////////////////////////////////
//
// WMMA template structure defines nvcuda::wmma::fragments and static assert for
// wmma native instruction sizes supported for half
//
////////////////////////////////////////////////////////////////////////////////
template <
typename Shape_,
typename LayoutA_,
typename LayoutB_,
typename ElementC_,
typename LayoutC_>
struct Wmma<
Shape_, ///< Size of the matrix product (concept: GemmShape)
cutlass::half_t, ///< ElementA
LayoutA_, ///< LayoutA
cutlass::half_t, ///< ElementB
LayoutB_, ///< LayoutB
ElementC_, ///< ElementC
LayoutC_, ///< LayoutC
cutlass::arch::OpMultiplyAdd ///< Operator (multiply-add, xor.popc)
> {
#if defined(CUTLASS_ARCH_WMMA_SM70_ENABLED)
using Shape = Shape_;
using ElementA = cutlass::half_t;
using LayoutA = LayoutA_;
using ElementB = cutlass::half_t;
using LayoutB = LayoutB_;
using ElementC = ElementC_;
using LayoutC = LayoutC_;
using Operator = cutlass::arch::OpMultiplyAdd;
// check supported wmma shape for the given multiplicand data types
static_assert(
platform::is_same<cutlass::gemm::GemmShape<16, 16, 16>, Shape>::value ||
platform::is_same<cutlass::gemm::GemmShape< 8, 32, 16>, Shape>::value ||
platform::is_same<cutlass::gemm::GemmShape<32, 8, 16>, Shape>::value,
"Supported list of wmma operator shape for f16 multiplicands are: 16x16x16, 8x328x16, and 32x8x16");
// check supported wmma output data type for the given multiplicand data types
static_assert(
platform::is_same<cutlass::half_t, ElementC>::value || platform::is_same<float, ElementC>::value,
"Supported of wmma output data type for f16 multiplicands are: f16 and f32");
// Wmma Fragment
using FragmentA = nvcuda::wmma::fragment<
nvcuda::wmma::matrix_a,
Shape::kM,
Shape::kN,
Shape::kK,
typename CutlassToWmmaDataType<ElementA>::Type,
typename CutlassToWmmaLayout<LayoutA>::Layout>;
using FragmentB = nvcuda::wmma::fragment<
nvcuda::wmma::matrix_b,
Shape::kM,
Shape::kN,
Shape::kK,
typename CutlassToWmmaDataType<ElementB>::Type,
typename CutlassToWmmaLayout<LayoutB>::Layout>;
using FragmentC = nvcuda::wmma::fragment<
nvcuda::wmma::accumulator,
Shape::kM,
Shape::kN,
Shape::kK,
typename CutlassToWmmaDataType<ElementC>::Type>;
/// Performs a nvcuda::wmma matrix multiply-accumulate operation
CUTLASS_DEVICE
void operator()(
FragmentC &D,
FragmentA const &A,
FragmentB const &B,
FragmentC const &C) const {
nvcuda::wmma::mma_sync(D, A, B, C);
}
#else
static_assert(false, "wmma.mma.sync for floating point multiplicands is avialable only for SM70 and beyond");
#endif
};
} // namespace arch
} // namespace cutlass