cutlass/test/unit/nvrtc/kernel/thread/testbed_kernel.h
Andrew Kerr fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00

71 lines
2.8 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#pragma once
#include "cutlass/array.h"
namespace test {
namespace nvrtc {
namespace kernel {
namespace thread {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Thread-level matrix multiply-accumulate
template <typename Mma>
__global__ void testbed_kernel(
typename Mma::ElementC *D,
typename Mma::ElementA const *A,
typename Mma::ElementB const *B,
typename Mma::ElementC const *C) {
auto ptr_D = reinterpret_cast<cutlass::Array<typename Mma::ElementC, Mma::Shape::kMN> *>(D);
auto ptr_A = reinterpret_cast<cutlass::Array<typename Mma::ElementA, Mma::Shape::kMK> const *>(A);
auto ptr_B = reinterpret_cast<cutlass::Array<typename Mma::ElementB, Mma::Shape::kKN> const *>(B);
auto ptr_C = reinterpret_cast<cutlass::Array<typename Mma::ElementC, Mma::Shape::kMN> const *>(C);
Mma mma;
auto a = *ptr_A;
auto b = *ptr_B;
auto c = *ptr_C;
cutlass::Array<typename Mma::ElementC, Mma::Shape::kMN> d;
mma(d, a, b, c);
*ptr_D = d;
}
}
}
}
}