cutlass/tools/profiler/src/cublas_helpers.h
Andrew Kerr fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00

94 lines
3.8 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Helper functions for mapping CUTLASS concepts to cuBLAS.
*/
#pragma once
#if CUTLASS_ENABLE_CUBLAS
#include <cublas_v2.h>
#include "cutlass/cutlass.h"
#include "cutlass/library/library.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace profiler {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Converts a cuBLAS status to cutlass::Status
Status get_cutlass_status(cublasStatus_t cublas);
/// Maps a CUTLASS tensor layout to a cuBLAS transpose operation
cublasOperation_t get_cublas_transpose_operation(library::LayoutTypeID layout);
/// Maps a CUTLASS numeric type to a cuBLAS data type enumeration
bool get_cublas_datatype(cublasDataType_t &data_type, library::NumericTypeID element_type);
/// Gets the cublas algorithm given threadblock tile dimensions and math opcode class
cublasGemmAlgo_t get_cublas_gemm_algo(
int cta_m,
int cta_n,
int cta_k,
library::OpcodeClassID opcode_class);
/// Returns a status if cuBLAS can satisfy a particular GEMM description
Status cublas_satisfies(library::GemmDescription const &desc);
/// This is a helper class to create cublasHandle_t automatically on CublasCreate object creation and
/// to destroy cublasHandle_t on CublasCreate object destruction.
/// Additionaly, it provides implicit cast from CublasCreate's object to cublasHandle_t's object
class CublasCreate {
private:
cublasHandle_t handle;
cublasStatus_t status;
public:
CublasCreate() {
status = cublasCreate(&handle);
}
~CublasCreate() {
cublasDestroy(handle);
}
/// Implicit cast CublasCreate object to cublasHandle_t
operator cublasHandle_t() const { return handle; }
/// returns cublasStatus_t for handle creation
cublasStatus_t get_cublas_create_status() { return status; }
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace profiler
} // namespace cutlass
#endif // #if CUTLASS_ENABLE_CUBLAS