cutlass/cutlass/load_store.h
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

426 lines
16 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Defines abstractions for efficiently loading and storing vectors to memory.
*/
#pragma once
#include "cutlass/vector.h"
namespace cutlass {
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* @brief Enum to specify which memory space data resides in.
*/
struct MemorySpace {
enum Kind {
kGeneric, // Data accessed through pointer dereferencing
kShared, // Data resides in shared memory
kGlobal // Data resides in global memory
};
};
/// Specifies whether iterator storage fragment consists of Scalar values or WMMA matrix
struct FragmentElementType {
enum Kind { kScalar, kWmmaMatrix };
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_,
int kAccessSize,
MemorySpace::Kind Memory_,
FragmentElementType::Kind kFragmentElementType = FragmentElementType::kScalar,
typename FragmentElement_ = Scalar_,
int kStride = 1,
size_t size = (sizeof(Scalar_) * kAccessSize)>
struct Load {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& dst, Scalar_ const* pointer, int offset) {
dst = *reinterpret_cast<AccessType const*>(pointer + offset);
}
/// The clear function.
static CUTLASS_HOST_DEVICE void clear(AccessType& dst) {
dst = 0;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for 16b loads
template <typename Scalar_, int kAccessSize, MemorySpace::Kind Memory_>
struct Load<Scalar_, kAccessSize, Memory_, FragmentElementType::kScalar, Scalar_, 1, 2> {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& dst, Scalar_ const* pointer, int offset) {
reinterpret_cast<uint16_t&>(dst) = reinterpret_cast<uint16_t const*>(&pointer[offset])[0];
}
/// The clear function.
static CUTLASS_HOST_DEVICE void clear(AccessType& dst) {
dst = uint16_t(0);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_, int kAccessSize, MemorySpace::Kind Memory_, int kStride>
struct Load<Scalar_, kAccessSize, Memory_, FragmentElementType::kScalar, Scalar_, kStride, 4> {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& dst, Scalar_ const* pointer, int offset) {
dst.registers[0] = reinterpret_cast<uint32_t const*>(&pointer[offset])[0];
}
/// The clear function.
static CUTLASS_HOST_DEVICE void clear(AccessType& dst) {
dst.registers[0] = uint32_t(0);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_, int kAccessSize, MemorySpace::Kind Memory_, int kStride>
struct Load<Scalar_, kAccessSize, Memory_, FragmentElementType::kScalar, Scalar_, kStride, 8> {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& dst, Scalar_ const* pointer, int offset) {
uint2 tmp = reinterpret_cast<uint2 const*>(&pointer[offset])[0];
dst.registers[0] = tmp.x;
dst.registers[1] = tmp.y;
}
/// The clear function.
static CUTLASS_HOST_DEVICE void clear(AccessType& dst) {
uint2 const zero = make_uint2(0, 0);
dst.registers[0] = zero.x;
dst.registers[1] = zero.y;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <MemorySpace::Kind Memory_, int kStride>
struct Load<double, 2, Memory_, FragmentElementType::kScalar, double, kStride, 16> {
/// The output type.
typedef typename Vectorize<double, 2>::Type AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& dst, double const* pointer, int offset) {
double2 tmp = reinterpret_cast<double2 const*>(&pointer[offset])[0];
dst[0] = tmp.x;
dst[1] = tmp.y;
}
/// The clear function.
static CUTLASS_HOST_DEVICE void clear(AccessType& dst) {
double2 zero = make_double2(0, 0);
dst[0] = zero.x;
dst[1] = zero.y;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
#if defined(__CUDACC_VERSION_MAJOR) && __CUDACC_VERSION_MAJOR < 10
// WAR bug in NVCC where the upper and lower half of the register end up being the same
template <MemorySpace::Kind Memory_, int kStride>
struct Load<half, 8, Memory_, FragmentElementType::kScalar, half, kStride, 16> {
/// The output type.
typedef typename Vectorize<half, 8>::Type AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& dst, half const* pointer, int offset) {
int2 tmp = reinterpret_cast<int2 const*>(&pointer[offset])[0];
dst.registers[0] = tmp.x;
dst.registers[1] = tmp.y;
tmp = reinterpret_cast<int2 const*>(&pointer[offset + 4])[0];
dst.registers[2] = tmp.x;
dst.registers[3] = tmp.y;
}
/// The clear function.
static CUTLASS_HOST_DEVICE void clear(AccessType& dst) {
int2 zero = make_int2(0,0);
dst.registers[0] = zero.x;
dst.registers[1] = zero.y;
dst.registers[2] = zero.x;
dst.registers[3] = zero.y;
}
};
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_, int kAccessSize, MemorySpace::Kind Memory_, int kStride>
struct Load<Scalar_, kAccessSize, Memory_, FragmentElementType::kScalar, Scalar_, kStride, 16> {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& dst, Scalar_ const* pointer, int offset) {
uint4 tmp = reinterpret_cast<uint4 const*>(&pointer[offset])[0];
dst.registers[0] = tmp.x;
dst.registers[1] = tmp.y;
dst.registers[2] = tmp.z;
dst.registers[3] = tmp.w;
}
/// The clear function.
static CUTLASS_HOST_DEVICE void clear(AccessType& dst) {
uint4 zero = make_uint4(0, 0, 0, 0);
dst.registers[0] = zero.x;
dst.registers[1] = zero.y;
dst.registers[2] = zero.z;
dst.registers[3] = zero.w;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_,
int kAccessSize,
MemorySpace::Kind Memory_,
FragmentElementType::Kind kFragmentElementType = FragmentElementType::kScalar,
typename FragmentElement_ = Scalar_,
int kStride = 1,
size_t size = (sizeof(Scalar_) * kAccessSize)>
struct Store {
/// The output type.
typedef typename Vectorize<FragmentElement_, kAccessSize>::Type AccessType;
/// The store function.
static CUTLASS_HOST_DEVICE void store(AccessType const& src, Scalar_* pointer, int offset) {
pointer[offset] = *reinterpret_cast<Scalar_ const*>(&src);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_, int kAccessSize, MemorySpace::Kind Memory_>
struct Store<Scalar_, kAccessSize, Memory_, FragmentElementType::kScalar, Scalar_, 1, 2> {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The store function.
static CUTLASS_HOST_DEVICE void store(AccessType const& src, Scalar_* pointer, int offset) {
uint16_t* addr = reinterpret_cast<uint16_t*>(&pointer[offset]);
addr[0] = reinterpret_cast<uint16_t const&>(src);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_, int kAccessSize, MemorySpace::Kind Memory_, int kStride>
struct Store<Scalar_, kAccessSize, Memory_, FragmentElementType::kScalar, Scalar_, kStride, 4> {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The store function.
static CUTLASS_HOST_DEVICE void store(AccessType const& src, Scalar_* pointer, int offset) {
uint32_t* addr = reinterpret_cast<uint32_t*>(&pointer[offset]);
addr[0] = src.registers[0];
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_, int kAccessSize, MemorySpace::Kind Memory_, int kStride>
struct Store<Scalar_, kAccessSize, Memory_, FragmentElementType::kScalar, Scalar_, kStride, 8> {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The store function.
static CUTLASS_HOST_DEVICE void store(AccessType const& src, Scalar_* pointer, int offset) {
uint2* addr = reinterpret_cast<uint2*>(&pointer[offset]);
addr[0] = make_uint2(src.registers[0], src.registers[1]);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <MemorySpace::Kind Memory_, int kStride>
struct Store<double, 2, Memory_, FragmentElementType::kScalar, double, kStride, 16> {
/// The output type.
typedef typename Vectorize<double, 2>::Type AccessType;
/// The store function.
static CUTLASS_HOST_DEVICE void store(AccessType const& src, double* pointer, int offset) {
double2* addr = reinterpret_cast<double2*>(&pointer[offset]);
addr[0] = make_double2(src[0], src[1]);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_, int kAccessSize, MemorySpace::Kind Memory_, int kStride>
struct Store<Scalar_, kAccessSize, Memory_, FragmentElementType::kScalar, Scalar_, kStride, 16> {
/// The output type.
typedef typename Vectorize<Scalar_, kAccessSize>::Type AccessType;
/// The store function.
static CUTLASS_HOST_DEVICE void store(AccessType const& src, Scalar_* pointer, int offset) {
uint4* addr = reinterpret_cast<uint4*>(&pointer[offset]);
addr[0] = make_uint4(src.registers[0], src.registers[1], src.registers[2], src.registers[3]);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_,
int kAccessSize,
MemorySpace::Kind Memory_,
typename FragmentElement_,
int kStride,
size_t size>
struct Load<Scalar_,
kAccessSize,
Memory_,
FragmentElementType::kWmmaMatrix,
FragmentElement_,
kStride,
size> {
/// The output type.
typedef FragmentElement_ AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& value, Scalar_ const* pointer, int offset) {
value.load(&pointer[offset], kStride);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int kAccessSize,
MemorySpace::Kind Memory_,
typename FragmentElement_,
int kStride,
size_t size>
struct Load<Vector<bin1_t, 32>,
kAccessSize,
Memory_,
FragmentElementType::kWmmaMatrix,
FragmentElement_,
kStride,
size> {
/// The output type.
typedef FragmentElement_ AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& value, Vector<bin1_t, 32> const* pointer,
int offset) {
value.load(&pointer[offset], kStride * 32);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int kAccessSize,
MemorySpace::Kind Memory_,
typename FragmentElement_,
int kStride,
size_t size>
struct Load<Vector<int4_t, 8>,
kAccessSize,
Memory_,
FragmentElementType::kWmmaMatrix,
FragmentElement_,
kStride,
size> {
/// The output type.
typedef FragmentElement_ AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& value, Vector<int4_t, 8> const* pointer,
int offset) {
value.load(&pointer[offset], kStride * 8);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int kAccessSize,
MemorySpace::Kind Memory_,
typename FragmentElement_,
int kStride,
size_t size>
struct Load<Vector<uint4_t, 8>,
kAccessSize,
Memory_,
FragmentElementType::kWmmaMatrix,
FragmentElement_,
kStride,
size> {
/// The output type.
typedef FragmentElement_ AccessType;
/// The load function.
static CUTLASS_HOST_DEVICE void load(AccessType& value, Vector<uint4_t, 8> const* pointer,
int offset) {
value.load(&pointer[offset], kStride * 8);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Scalar_,
int kAccessSize,
MemorySpace::Kind Memory_,
typename FragmentElement_,
int kStride,
size_t size>
struct Store<Scalar_,
kAccessSize,
Memory_,
FragmentElementType::kWmmaMatrix,
FragmentElement_,
kStride,
size> {
/// The input type.
typedef FragmentElement_ AccessType;
/// The store function.
static CUTLASS_HOST_DEVICE void store(AccessType const& value, Scalar_* pointer, int offset) {
value.store(&pointer[offset], kStride);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass