244 lines
8.5 KiB
CMake
244 lines
8.5 KiB
CMake
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# 3. Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
list(SORT CUTLASS_NVCC_ARCHS_ENABLED)
|
|
set(CUTLASS_NVCC_ARCHS_ENABLED_REVERSED ${CUTLASS_NVCC_ARCHS_ENABLED})
|
|
list(REVERSE CUTLASS_NVCC_ARCHS_ENABLED_REVERSED)
|
|
list(GET CUTLASS_NVCC_ARCHS_ENABLED_REVERSED 0 CUTLASS_NVCC_MAX_ARCH)
|
|
|
|
add_custom_target(
|
|
cutlass_test_unit_conv_device
|
|
DEPENDS
|
|
cutlass_test_unit_conv_device_simt
|
|
)
|
|
|
|
add_custom_target(
|
|
test_unit_conv_device
|
|
DEPENDS
|
|
test_unit_conv_device_simt
|
|
)
|
|
|
|
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 70)
|
|
|
|
add_dependencies(
|
|
cutlass_test_unit_conv_device
|
|
cutlass_test_unit_conv_device_tensorop_f32_sm70
|
|
)
|
|
|
|
add_dependencies(
|
|
test_unit_conv_device
|
|
test_unit_conv_device_tensorop_f32_sm70
|
|
)
|
|
|
|
endif()
|
|
|
|
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 75)
|
|
|
|
add_dependencies(
|
|
cutlass_test_unit_conv_device
|
|
cutlass_test_unit_conv_device_tensorop_f32_sm75
|
|
cutlass_test_unit_conv_device_tensorop_s32
|
|
cutlass_test_unit_conv_device_tensorop_s32_interleaved
|
|
)
|
|
|
|
add_dependencies(
|
|
test_unit_conv_device
|
|
test_unit_conv_device_tensorop_f32_sm75
|
|
test_unit_conv_device_tensorop_s32
|
|
test_unit_conv_device_tensorop_s32_interleaved
|
|
)
|
|
|
|
endif()
|
|
|
|
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
|
|
|
|
add_dependencies(
|
|
cutlass_test_unit_conv_device
|
|
cutlass_test_unit_conv_device_tensorop_f16_sm80
|
|
cutlass_test_unit_conv_device_tensorop_f32_sm80
|
|
cutlass_test_unit_conv_device_tensorop_f32_tf32_sm80
|
|
)
|
|
|
|
add_dependencies(
|
|
test_unit_conv_device
|
|
test_unit_conv_device_tensorop_f16_sm80
|
|
test_unit_conv_device_tensorop_f32_sm80
|
|
test_unit_conv_device_tensorop_f32_tf32_sm80
|
|
)
|
|
|
|
endif()
|
|
|
|
#
|
|
# OpClassSimt (CUDA cores)
|
|
#
|
|
|
|
cutlass_test_unit_add_executable(
|
|
cutlass_test_unit_conv_device_simt
|
|
|
|
# F32
|
|
conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm50.cu
|
|
|
|
# CF32
|
|
conv2d_fprop_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
|
|
conv2d_dgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
|
|
conv2d_wgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
|
|
|
|
# F16
|
|
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu
|
|
depthwise_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu
|
|
)
|
|
|
|
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
|
|
|
|
cutlass_target_sources(
|
|
cutlass_test_unit_conv_device_simt
|
|
PRIVATE
|
|
conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu
|
|
conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu
|
|
conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu
|
|
conv2d_fprop_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm80.cu
|
|
conv2d_dgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm80.cu
|
|
conv2d_wgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm80.cu
|
|
)
|
|
|
|
endif()
|
|
|
|
#
|
|
# OpClassTensorOp (Tensor cores)
|
|
#
|
|
|
|
# Conv - F16 input, F32 output, F32 accumulation
|
|
cutlass_test_unit_add_executable(
|
|
cutlass_test_unit_conv_device_tensorop_f32_sm70
|
|
conv2d_fprop_with_broadcast_sm70.cu
|
|
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
|
|
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
|
|
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
|
|
)
|
|
|
|
# Conv - F16 input, F32 output, F32 accumulation - SM75
|
|
cutlass_test_unit_add_executable(
|
|
cutlass_test_unit_conv_device_tensorop_f32_sm75
|
|
|
|
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm75.cu
|
|
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm75.cu
|
|
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm75.cu
|
|
|
|
conv2d_fprop_with_broadcast_sm75.cu
|
|
conv2d_fprop_with_reduction_sm75.cu
|
|
|
|
conv3d_wgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm75.cu
|
|
)
|
|
|
|
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
|
|
|
|
# Conv - F16 input, F16 output, F16 accumulation
|
|
cutlass_test_unit_add_executable(
|
|
cutlass_test_unit_conv_device_tensorop_f16_sm80
|
|
|
|
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu
|
|
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu
|
|
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu
|
|
)
|
|
|
|
# Conv - F16 input, F32 output, F32 accumulation
|
|
cutlass_test_unit_add_executable(
|
|
cutlass_test_unit_conv_device_tensorop_f32_sm80
|
|
|
|
# Conv2d
|
|
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu
|
|
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu
|
|
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu
|
|
|
|
# Conv2d (small channel count specializations)
|
|
conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu
|
|
conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu
|
|
|
|
# Conv2d (Strided Dgrad)
|
|
conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu
|
|
conv2d_strided_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu
|
|
|
|
# Conv3d
|
|
conv3d_wgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu
|
|
|
|
# Group Conv2d
|
|
group_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu
|
|
)
|
|
|
|
# Conv - TF32 input, F32 output, F32 accumulation
|
|
cutlass_test_unit_add_executable(
|
|
cutlass_test_unit_conv_device_tensorop_f32_tf32_sm80
|
|
|
|
conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu
|
|
conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu
|
|
conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu
|
|
|
|
conv3d_fprop_implicit_gemm_tf32ndhwc_tf32ndhwc_f32ndhwc_tensor_op_f32_sm80.cu
|
|
conv3d_dgrad_implicit_gemm_tf32ndhwc_tf32ndhwc_f32ndhwc_tensor_op_f32_sm80.cu
|
|
conv3d_wgrad_implicit_gemm_tf32ndhwc_tf32ndhwc_f32ndhwc_tensor_op_f32_sm80.cu
|
|
)
|
|
|
|
endif()
|
|
|
|
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 75)
|
|
|
|
# Conv2d - S8 input, S32 output, S32 accumulation
|
|
cutlass_test_unit_add_executable(
|
|
cutlass_test_unit_conv_device_tensorop_s32
|
|
conv2d_fprop_implicit_gemm_s8nhwc_s8nhwc_s32nhwc_tensor_op_s32_sm75.cu
|
|
conv2d_fprop_implicit_gemm_s4nhwc_s4nhwc_s32nhwc_tensor_op_s32_sm75.cu
|
|
)
|
|
|
|
# Conv2d - S8 interleaved input, S8 interleaved output, S32 accumulation
|
|
cutlass_test_unit_add_executable(
|
|
cutlass_test_unit_conv_device_tensorop_s32_interleaved
|
|
conv2d_fprop_implicit_gemm_s8ncxhwx_s8cxrskx_s8ncxhwx_tensor_op_s32_sm75.cu
|
|
conv2d_fprop_implicit_gemm_s4ncxhwx_s4cxrskx_s4ncxhwx_tensor_op_s32_sm75.cu
|
|
)
|
|
|
|
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
|
|
|
|
cutlass_target_sources(
|
|
cutlass_test_unit_conv_device_tensorop_s32
|
|
PRIVATE
|
|
conv2d_fprop_implicit_gemm_s8nhwc_s8nhwc_s32nhwc_tensor_op_s32_sm80.cu
|
|
conv2d_fprop_implicit_gemm_s4nhwc_s4nhwc_s32nhwc_tensor_op_s32_sm80.cu
|
|
)
|
|
|
|
# Conv2d - S8 interleaved input, S8 interleaved output, S32 accumulation
|
|
cutlass_target_sources(
|
|
cutlass_test_unit_conv_device_tensorop_s32_interleaved
|
|
PRIVATE
|
|
conv2d_fprop_implicit_gemm_s8ncxhwx_s8cxrskx_s8ncxhwx_tensor_op_s32_sm80.cu
|
|
conv2d_fprop_implicit_gemm_s4ncxhwx_s4cxrskx_s4ncxhwx_tensor_op_s32_sm80.cu
|
|
)
|
|
|
|
endif()
|
|
|
|
endif()
|