
* New updates. * Minor profiler updates Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
390 lines
11 KiB
Plaintext
390 lines
11 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Tests for device-wide GEMM interface
|
|
*/
|
|
|
|
#include <iostream>
|
|
|
|
#include "../../common/cutlass_unit_test.h"
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/epilogue/thread/linear_combination.h"
|
|
#include "cutlass/reduction/kernel/reduce_split_k.h"
|
|
#include "cutlass/reduction/thread/reduction_operators.h"
|
|
|
|
#include "cutlass/util/host_tensor.h"
|
|
#include "cutlass/util/reference/host/gemm.h"
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
#include "cutlass/util/reference/host/tensor_copy.h"
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
#include "cutlass/util/reference/host/tensor_norm.h"
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace test {
|
|
namespace reduction {
|
|
|
|
template <typename ReductionKernel>
|
|
__global__ void kernel_reduce_splitk(typename ReductionKernel::Params params) {
|
|
|
|
__shared__ typename ReductionKernel::SharedStorage shared_storage;
|
|
|
|
ReductionKernel reduction_op;
|
|
|
|
reduction_op(params, shared_storage);
|
|
}
|
|
|
|
template <typename ReductionKernel>
|
|
class ReduceSplitKTestbed {
|
|
public:
|
|
|
|
using ElementAccumulator = typename ReductionKernel::ElementAccumulator;
|
|
using ElementWorkspace = typename ReductionKernel::ElementWorkspace;
|
|
using ElementOutput = typename ReductionKernel::ElementOutput;
|
|
using Layout = cutlass::layout::RowMajor;
|
|
|
|
public:
|
|
|
|
cutlass::Distribution::Kind distribution_workspace;
|
|
cutlass::Distribution::Kind distribution_source;
|
|
uint64_t seed;
|
|
|
|
public:
|
|
|
|
/// Ctor
|
|
ReduceSplitKTestbed(
|
|
cutlass::Distribution::Kind distribution_workspace = cutlass::Distribution::Uniform,
|
|
cutlass::Distribution::Kind distribution_source = cutlass::Distribution::Uniform,
|
|
uint64_t seed = 2019
|
|
):
|
|
distribution_workspace(distribution_workspace),
|
|
distribution_source(distribution_source),
|
|
seed(seed) {
|
|
|
|
}
|
|
|
|
/// Helper to initialize a tensor view
|
|
template <typename Element, typename Layout>
|
|
bool initialize_tensor(cutlass::TensorView<Element, Layout> view,
|
|
cutlass::Distribution::Kind dist_kind,
|
|
uint64_t seed) {
|
|
|
|
if (dist_kind == cutlass::Distribution::Uniform) {
|
|
cutlass::reference::host::TensorFillRandomUniform(view, seed, 8, -8, 0);
|
|
}
|
|
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
|
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5, -1);
|
|
} else if (dist_kind == cutlass::Distribution::Identity) {
|
|
cutlass::reference::host::TensorFillIdentity(view);
|
|
} else if (dist_kind == cutlass::Distribution::Sequential) {
|
|
cutlass::reference::host::BlockFillSequential(view.data(),
|
|
view.capacity());
|
|
} else {
|
|
// TODO: Implement the rest
|
|
EXPECT_TRUE(false) << "Not implemented";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Runs a single problem size
|
|
bool run(
|
|
cutlass::MatrixCoord problem_size,
|
|
int partitions,
|
|
ElementAccumulator alpha = 1,
|
|
ElementAccumulator beta = 0) {
|
|
|
|
cutlass::HostTensor<ElementWorkspace, Layout> workspace({
|
|
problem_size.row() * partitions,
|
|
problem_size.column()
|
|
});
|
|
|
|
cutlass::HostTensor<ElementOutput, Layout> source(problem_size);
|
|
cutlass::HostTensor<ElementOutput, Layout> destination(problem_size);
|
|
cutlass::HostTensor<ElementOutput, Layout> destination_reference(problem_size, false);
|
|
|
|
//
|
|
// Initialize
|
|
//
|
|
initialize_tensor(workspace.host_view(), distribution_workspace, seed);
|
|
initialize_tensor(source.host_view(), distribution_source, seed + 23);
|
|
|
|
cutlass::reference::host::TensorFill(destination.host_view());
|
|
|
|
workspace.sync_device();
|
|
source.sync_device();
|
|
destination.sync_device();
|
|
|
|
//
|
|
// Launch reduction kernel
|
|
//
|
|
|
|
dim3 block = ReductionKernel::block_shape();
|
|
dim3 grid = ReductionKernel::grid_shape(problem_size);
|
|
|
|
typename ReductionKernel::Params params(
|
|
problem_size,
|
|
partitions,
|
|
problem_size.row() * problem_size.column(),
|
|
workspace.device_ref(),
|
|
destination.device_ref(),
|
|
source.device_ref(),
|
|
{alpha, beta}
|
|
);
|
|
|
|
test::reduction::kernel_reduce_splitk<ReductionKernel><<< grid, block >>>(params);
|
|
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
|
|
EXPECT_EQ(result, cudaSuccess)
|
|
<< "CUDA error: " << cudaGetErrorString(result);
|
|
|
|
destination.sync_host();
|
|
|
|
//
|
|
// Compute reference
|
|
//
|
|
|
|
for (int m = 0; m < problem_size.row(); ++m) {
|
|
for (int n = 0; n < problem_size.column(); ++n) {
|
|
|
|
ElementAccumulator accum = 0;
|
|
|
|
for (int k = 0; k < partitions; ++k) {
|
|
accum += ElementAccumulator(workspace.at({m + k * problem_size.row(), n}));
|
|
}
|
|
|
|
ElementAccumulator c = ElementAccumulator(source.at({m, n}));
|
|
|
|
destination_reference.at({m, n}) = ElementOutput(accum * alpha + beta * c);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Compare
|
|
//
|
|
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(destination.host_view()), 0);
|
|
EXPECT_GT(cutlass::reference::host::TensorNorm(destination_reference.host_view()), 0);
|
|
|
|
bool passed = cutlass::reference::host::TensorEquals(
|
|
destination.host_view(), destination_reference.host_view());
|
|
|
|
EXPECT_TRUE(passed)
|
|
<< "Workspace =\n" << workspace.host_view() << "\n\n"
|
|
<< "\n"
|
|
<< "Reference =\n" << destination_reference.host_view() << "\n\n"
|
|
<< "Computed =\n" << destination.host_view() << "\n";
|
|
|
|
return passed;
|
|
}
|
|
|
|
/// Runs through a variety of test cases
|
|
bool run_all() {
|
|
|
|
cutlass::MatrixCoord problem_sizes[] = {
|
|
{8, 8},
|
|
{136, 72},
|
|
{248, 232},
|
|
};
|
|
|
|
int partition_counts[] = {
|
|
1,3,4,5,11
|
|
};
|
|
|
|
bool passed = false;
|
|
|
|
for (cutlass::MatrixCoord problem : problem_sizes) {
|
|
for (int partitions : partition_counts) {
|
|
passed = run(problem, partitions);
|
|
if (!passed) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return passed;
|
|
}
|
|
};
|
|
|
|
} // namespace reduction
|
|
} // namespace test
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Strictly F32 data
|
|
//
|
|
TEST(Reduction_ReduceSplitK, f32_f32_f32_1_1x32) {
|
|
|
|
using ElementWorkspace = float;
|
|
using ElementAccumulator = float;
|
|
using ElementOutput = float;
|
|
int const kN = 1;
|
|
using Shape = cutlass::MatrixShape<1, 32>;
|
|
|
|
using OutputOp = cutlass::epilogue::thread::LinearCombination<
|
|
ElementOutput,
|
|
kN,
|
|
ElementAccumulator,
|
|
ElementAccumulator
|
|
>;
|
|
|
|
using ReductionOp = cutlass::reduction::thread::ReduceAdd<
|
|
ElementAccumulator,
|
|
ElementWorkspace,
|
|
kN
|
|
>;
|
|
|
|
using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK<
|
|
Shape,
|
|
OutputOp,
|
|
ReductionOp
|
|
>;
|
|
|
|
test::reduction::ReduceSplitKTestbed<ReductionKernel> testbed;
|
|
|
|
EXPECT_TRUE(testbed.run_all());
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vectorized access
|
|
//
|
|
TEST(Reduction_ReduceSplitK, f32_f32_f32_2_4x64) {
|
|
|
|
using ElementWorkspace = float;
|
|
using ElementAccumulator = float;
|
|
using ElementOutput = float;
|
|
int const kN = 2;
|
|
using Shape = cutlass::MatrixShape<4, 64>;
|
|
|
|
using OutputOp = cutlass::epilogue::thread::LinearCombination<
|
|
ElementOutput,
|
|
kN,
|
|
ElementAccumulator,
|
|
ElementAccumulator
|
|
>;
|
|
|
|
using ReductionOp = cutlass::reduction::thread::ReduceAdd<
|
|
ElementAccumulator,
|
|
ElementWorkspace,
|
|
kN
|
|
>;
|
|
|
|
using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK<
|
|
Shape,
|
|
OutputOp,
|
|
ReductionOp
|
|
>;
|
|
|
|
test::reduction::ReduceSplitKTestbed<ReductionKernel> testbed;
|
|
|
|
EXPECT_TRUE(testbed.run_all());
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vectorized access
|
|
//
|
|
TEST(Reduction_ReduceSplitK, f32_f32_f16_2_4x64) {
|
|
|
|
using ElementWorkspace = float;
|
|
using ElementAccumulator = float;
|
|
using ElementOutput = cutlass::half_t;
|
|
int const kN = 2;
|
|
using Shape = cutlass::MatrixShape<4, 64>;
|
|
|
|
using OutputOp = cutlass::epilogue::thread::LinearCombination<
|
|
ElementOutput,
|
|
kN,
|
|
ElementAccumulator,
|
|
ElementAccumulator
|
|
>;
|
|
|
|
using ReductionOp = cutlass::reduction::thread::ReduceAdd<
|
|
ElementAccumulator,
|
|
ElementWorkspace,
|
|
kN
|
|
>;
|
|
|
|
using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK<
|
|
Shape,
|
|
OutputOp,
|
|
ReductionOp
|
|
>;
|
|
|
|
test::reduction::ReduceSplitKTestbed<ReductionKernel> testbed;
|
|
|
|
EXPECT_TRUE(testbed.run_all());
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vectorized access
|
|
//
|
|
TEST(Reduction_ReduceSplitK, f32_f32_f16_8_4x64) {
|
|
|
|
using ElementWorkspace = float;
|
|
using ElementAccumulator = float;
|
|
using ElementOutput = cutlass::half_t;
|
|
int const kN = 8;
|
|
using Shape = cutlass::MatrixShape<4, 64>;
|
|
|
|
using OutputOp = cutlass::epilogue::thread::LinearCombination<
|
|
ElementOutput,
|
|
kN,
|
|
ElementAccumulator,
|
|
ElementAccumulator
|
|
>;
|
|
|
|
using ReductionOp = cutlass::reduction::thread::ReduceAdd<
|
|
ElementAccumulator,
|
|
ElementWorkspace,
|
|
kN
|
|
>;
|
|
|
|
using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK<
|
|
Shape,
|
|
OutputOp,
|
|
ReductionOp
|
|
>;
|
|
|
|
test::reduction::ReduceSplitKTestbed<ReductionKernel> testbed;
|
|
|
|
EXPECT_TRUE(testbed.run_all());
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|