
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
308 lines
9.3 KiB
Plaintext
308 lines
9.3 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
#include "cutlass_unit_test.h"
|
|
#include "cutlass/shape.h"
|
|
#include "tools/util/host_tensor.h"
|
|
#include "cutlass/reduction/batched_reduction.h"
|
|
#include "cutlass/reduction/batched_reduction_traits.h"
|
|
#include "tools/test/unit/reduction/test_batched_reduction.h"
|
|
#include "tools/test/unit/reduction/batched_reduction_testbed.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(Batched_reduction_float, batched_reduction_128x256x16) {
|
|
/*
|
|
The output matrix is 128x256
|
|
The input matrix is 128x256x16
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 16;
|
|
typedef cutlass::reduction::BatchedReductionTraits<float, /*A*/
|
|
float, /*C*/
|
|
float, /*D*/
|
|
float, /*alpha and beta*/
|
|
float, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits_16;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(Batched_reduction_double, batched_reduction_128x256x16) {
|
|
/*
|
|
D = alpha * Reduction(A) + beta * C
|
|
The output matrix D is 128x256
|
|
The input matrix A is 128x256x16
|
|
The input matrix C is 128x256
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 16;
|
|
typedef cutlass::reduction::BatchedReductionTraits<double,
|
|
double,
|
|
double,
|
|
double,
|
|
double, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits_16;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
TEST(Batched_reduction_half, batched_reduction_128x256x16) {
|
|
/*
|
|
The output matrix is 128x256
|
|
The input matrix is 128x256x16
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 16;
|
|
typedef cutlass::reduction::BatchedReductionTraits<half,
|
|
half,
|
|
half,
|
|
half,
|
|
half, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits_16;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
|
|
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(Batched_reduction_float, batched_reduction_128x64x80) {
|
|
/*
|
|
The output matrix is 128x64
|
|
The input matrix is 128x64x80
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 64;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 80;
|
|
typedef cutlass::reduction::BatchedReductionTraits<float,
|
|
float,
|
|
float,
|
|
float,
|
|
float, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits_80;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_80>(m, n, lda, ldc, ldd);
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(Batched_reduction_double, batched_reduction_128x64x80) {
|
|
/*
|
|
The output matrix is 128x64
|
|
The input matrix is 128x64x80
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 64;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 80;
|
|
typedef cutlass::reduction::BatchedReductionTraits<double,
|
|
double,
|
|
double,
|
|
double,
|
|
double, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits_80;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_80>(m, n, lda, ldc, ldd);
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
TEST(Batched_reduction_half, batched_reduction_128x64x80) {
|
|
/*
|
|
The output matrix is 128x64
|
|
The input matrix is 128x64x80
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 64;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 80;
|
|
typedef cutlass::reduction::BatchedReductionTraits<half,
|
|
half,
|
|
half,
|
|
half,
|
|
half, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 2> >
|
|
BatchedReductionTraits_80;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_80>(m, n, lda, ldc, ldd);
|
|
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(Batched_reduction_float_threadShape1, batched_reduction_128x256x90) {
|
|
/*
|
|
The output matrix is 128x256
|
|
The input matrix is 128x256x90
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 90;
|
|
typedef cutlass::reduction::BatchedReductionTraits<float, /*A*/
|
|
float, /*C*/
|
|
float, /*D*/
|
|
float, /*alpha and beta*/
|
|
float, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 1> >
|
|
BatchedReductionTraits_16;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(Batched_reduction_double_threadShape1, batched_reduction_128x256x90) {
|
|
/*
|
|
The output matrix is 128x256
|
|
The input matrix is 128x256x90
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 90;
|
|
typedef cutlass::reduction::BatchedReductionTraits<double, /*A*/
|
|
double, /*C*/
|
|
double, /*D*/
|
|
double, /*alpha and beta*/
|
|
double, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 1> >
|
|
BatchedReductionTraits_16;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
TEST(Batched_reduction_half_threadShape1, batched_reduction_128x256x90) {
|
|
/*
|
|
The output matrix is 128x256
|
|
The input matrix is 128x256x90
|
|
The reduction will be applied at the third dim of input matrix
|
|
*/
|
|
|
|
|
|
const int m = 128;
|
|
const int n = 256;
|
|
const int lda = 128;
|
|
const int ldc = 128;
|
|
const int ldd = 128;
|
|
const int reduction_size = 90;
|
|
typedef cutlass::reduction::BatchedReductionTraits<half, /*A*/
|
|
half, /*C*/
|
|
half, /*D*/
|
|
half, /*alpha and beta*/
|
|
half, /*accumulation type*/
|
|
reduction_size,
|
|
cutlass::Shape<1, 1, 128>,
|
|
cutlass::Shape<1, 1, 64>,
|
|
cutlass::Shape<1, 1, 1> >
|
|
BatchedReductionTraits_16;
|
|
|
|
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
|
|
|
|
}
|