cutlass/tools/test/unit/reduction/batched_reduction.cu
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

308 lines
9.3 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include "cutlass_unit_test.h"
#include "cutlass/shape.h"
#include "tools/util/host_tensor.h"
#include "cutlass/reduction/batched_reduction.h"
#include "cutlass/reduction/batched_reduction_traits.h"
#include "tools/test/unit/reduction/test_batched_reduction.h"
#include "tools/test/unit/reduction/batched_reduction_testbed.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_float, batched_reduction_128x256x16) {
/*
The output matrix is 128x256
The input matrix is 128x256x16
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 256;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 16;
typedef cutlass::reduction::BatchedReductionTraits<float, /*A*/
float, /*C*/
float, /*D*/
float, /*alpha and beta*/
float, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 2> >
BatchedReductionTraits_16;
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_double, batched_reduction_128x256x16) {
/*
D = alpha * Reduction(A) + beta * C
The output matrix D is 128x256
The input matrix A is 128x256x16
The input matrix C is 128x256
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 256;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 16;
typedef cutlass::reduction::BatchedReductionTraits<double,
double,
double,
double,
double, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 2> >
BatchedReductionTraits_16;
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_half, batched_reduction_128x256x16) {
/*
The output matrix is 128x256
The input matrix is 128x256x16
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 256;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 16;
typedef cutlass::reduction::BatchedReductionTraits<half,
half,
half,
half,
half, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 2> >
BatchedReductionTraits_16;
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_float, batched_reduction_128x64x80) {
/*
The output matrix is 128x64
The input matrix is 128x64x80
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 64;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 80;
typedef cutlass::reduction::BatchedReductionTraits<float,
float,
float,
float,
float, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 2> >
BatchedReductionTraits_80;
test_batched_reduction<BatchedReductionTraits_80>(m, n, lda, ldc, ldd);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_double, batched_reduction_128x64x80) {
/*
The output matrix is 128x64
The input matrix is 128x64x80
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 64;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 80;
typedef cutlass::reduction::BatchedReductionTraits<double,
double,
double,
double,
double, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 2> >
BatchedReductionTraits_80;
test_batched_reduction<BatchedReductionTraits_80>(m, n, lda, ldc, ldd);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_half, batched_reduction_128x64x80) {
/*
The output matrix is 128x64
The input matrix is 128x64x80
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 64;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 80;
typedef cutlass::reduction::BatchedReductionTraits<half,
half,
half,
half,
half, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 2> >
BatchedReductionTraits_80;
test_batched_reduction<BatchedReductionTraits_80>(m, n, lda, ldc, ldd);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_float_threadShape1, batched_reduction_128x256x90) {
/*
The output matrix is 128x256
The input matrix is 128x256x90
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 256;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 90;
typedef cutlass::reduction::BatchedReductionTraits<float, /*A*/
float, /*C*/
float, /*D*/
float, /*alpha and beta*/
float, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 1> >
BatchedReductionTraits_16;
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_double_threadShape1, batched_reduction_128x256x90) {
/*
The output matrix is 128x256
The input matrix is 128x256x90
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 256;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 90;
typedef cutlass::reduction::BatchedReductionTraits<double, /*A*/
double, /*C*/
double, /*D*/
double, /*alpha and beta*/
double, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 1> >
BatchedReductionTraits_16;
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Batched_reduction_half_threadShape1, batched_reduction_128x256x90) {
/*
The output matrix is 128x256
The input matrix is 128x256x90
The reduction will be applied at the third dim of input matrix
*/
const int m = 128;
const int n = 256;
const int lda = 128;
const int ldc = 128;
const int ldd = 128;
const int reduction_size = 90;
typedef cutlass::reduction::BatchedReductionTraits<half, /*A*/
half, /*C*/
half, /*D*/
half, /*alpha and beta*/
half, /*accumulation type*/
reduction_size,
cutlass::Shape<1, 1, 128>,
cutlass::Shape<1, 1, 64>,
cutlass::Shape<1, 1, 1> >
BatchedReductionTraits_16;
test_batched_reduction<BatchedReductionTraits_16>(m, n, lda, ldc, ldd);
}