
CUTLASS 1.3 Release - Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
218 lines
7.0 KiB
Plaintext
218 lines
7.0 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/* \file
|
|
|
|
\brief
|
|
|
|
These tests are intended to demonstrate the CUTLASS reference implementation for basic for-each
|
|
operators on the index space of TensorView objects. They instantiate a HostMatrix, initialize
|
|
its elements with random data according to specified random distributions, and clamp the
|
|
elements using a TensorForEach() operation.
|
|
|
|
Both device-side and host-side reference implementations are called.
|
|
*/
|
|
|
|
#include "cutlass_unit_test.h"
|
|
|
|
#include "cutlass/matrix_traits.h"
|
|
|
|
#include "tools/util/tensor_view_io.h"
|
|
#include "tools/util/host_tensor.h"
|
|
#include "tools/util/host_matrix.h"
|
|
|
|
#include "tools/util/reference/device/tensor_foreach.h"
|
|
#include "tools/util/reference/device/tensor_elementwise.h"
|
|
|
|
#include "tools/util/reference/host/tensor_foreach.h"
|
|
#include "tools/util/reference/host/tensor_elementwise.h"
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace test {
|
|
|
|
/// Define a functor that computes the ReLu operation on a tensor.
|
|
template <typename View>
|
|
struct ReLuFunc {
|
|
|
|
/// Coordinate of index space
|
|
typedef typename View::TensorCoord TensorCoord;
|
|
|
|
/// Scalar type
|
|
typedef typename View::Storage T;
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
/// Tensor view
|
|
View view;
|
|
|
|
/// ReLu threshold
|
|
T threshold;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Constructor
|
|
CUTLASS_HOST_DEVICE
|
|
ReLuFunc(View const &view, T threshold): view(view), threshold(threshold) { }
|
|
|
|
/// ReLu function
|
|
CUTLASS_HOST_DEVICE
|
|
void operator()(TensorCoord const &coord) {
|
|
T value = view.at(coord);
|
|
|
|
if (value < threshold) {
|
|
value = threshold;
|
|
}
|
|
|
|
view.at(coord) = value;
|
|
}
|
|
};
|
|
|
|
} // namespace test
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// This tests models the computation of ReLu using reference utility code.
|
|
TEST(TensorForEach, ReLu_device) {
|
|
|
|
// Define HostMatrix type
|
|
typedef cutlass::HostMatrix<float> HostMatrix;
|
|
typedef typename HostMatrix::DeviceTensorView View;
|
|
|
|
// Define the problem size
|
|
int const M = 517;
|
|
int const N = 117;
|
|
|
|
float threshold = 0;
|
|
|
|
// Construct the host matrix
|
|
HostMatrix source(cutlass::MatrixCoord(M, N), cutlass::MatrixLayout::kRowMajor);
|
|
source.fill(0);
|
|
|
|
// Initialize the source matrix with a uniform distribution
|
|
cutlass::Distribution dist;
|
|
dist.set_uniform(-16, 16);
|
|
|
|
// RNG seed is hard-coded for determinism in the test.
|
|
int64_t seed = 2080;
|
|
|
|
cutlass::reference::device::TensorInitialize(source.device_view(), seed, dist);
|
|
|
|
// Define a functor called by TensorForEach<>
|
|
typedef test::ReLuFunc<View> ReLuFunc;
|
|
|
|
// Instantiate on host with TensorView and threshold value
|
|
ReLuFunc relu_func(source.device_view(), threshold);
|
|
|
|
// Launch kernel that applies the element-wise operator over the tensor's index space.
|
|
cutlass::reference::device::TensorForEach<
|
|
ReLuFunc,
|
|
View::kRank,
|
|
ReLuFunc>(source.size(), relu_func);
|
|
|
|
// Verify no element is less than the ReLu threshold.
|
|
source.sync_host();
|
|
|
|
int errors = 0;
|
|
for (cutlass::MatrixCoord coord(0, 0); coord.row() < M; ++coord.row()) {
|
|
for (coord.column() = 0; coord.column() < N; ++coord.column()) {
|
|
if (source.at(coord) < threshold) {
|
|
++errors;
|
|
if (errors < 10) {
|
|
std::cout << "Error - source(" << coord << ") = "
|
|
<< source.at(coord) << " is less than threshold " << threshold << std::endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
EXPECT_EQ(errors, 0)
|
|
<< "Result: " << source;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Test to apply the ReLu operation using host-side utilities
|
|
TEST(TensorForEach, ReLu_host) {
|
|
|
|
// Define HostMatrix type
|
|
typedef cutlass::HostMatrix<float> HostMatrix;
|
|
typedef typename HostMatrix::HostTensorView View;
|
|
|
|
// Define the problem size
|
|
int const M = 517;
|
|
int const N = 117;
|
|
|
|
float threshold = 0;
|
|
|
|
bool const kDeviceBacked = false;
|
|
|
|
// Construct the host matrix
|
|
HostMatrix source(cutlass::MatrixCoord(M, N), cutlass::MatrixLayout::kRowMajor, kDeviceBacked);
|
|
source.fill(0);
|
|
|
|
// Initialize the source matrix with a uniform distribution
|
|
cutlass::Distribution dist;
|
|
dist.set_gaussian(-1, 4);
|
|
|
|
// RNG seed is hard-coded for determinism in the test.
|
|
unsigned seed = 2080;
|
|
|
|
cutlass::reference::host::TensorInitialize(source.host_view(), seed, dist);
|
|
|
|
// Define a functor called by TensorForEach<>
|
|
typedef test::ReLuFunc<View> ReLuFunc;
|
|
|
|
// Instantiate on host with TensorView and threshold value
|
|
ReLuFunc relu_func(source.host_view(), threshold);
|
|
|
|
// Invoke host-side for-each computation on the tensor
|
|
cutlass::reference::host::TensorForEach<
|
|
ReLuFunc,
|
|
View::kRank,
|
|
ReLuFunc>(source.size(), relu_func);
|
|
|
|
int errors = 0;
|
|
for (cutlass::MatrixCoord coord(0, 0); coord.row() < M; ++coord.row()) {
|
|
for (coord.column() = 0; coord.column() < N; ++coord.column()) {
|
|
if (source.at(coord) < threshold) {
|
|
++errors;
|
|
if (errors < 10) {
|
|
std::cout << "Error - source(" << coord << ") = "
|
|
<< source.at(coord) << " is less than threshold " << threshold << std::endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
EXPECT_EQ(errors, 0)
|
|
<< "Result: " << source;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|