cutlass/tools/util/reference/device/kernel/tensor_elementwise.h
Andrew Kerr 877bdcace6
Cutlass 1.3 Release (#42)
CUTLASS 1.3 Release
- Efficient GEMM kernel targeting Volta Tensor Cores via mma.sync instruction added in CUDA 10.1.
2019-03-20 10:49:17 -07:00

163 lines
6.0 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <curand_kernel.h>
#include "cutlass/cutlass.h"
namespace cutlass {
namespace reference {
namespace device {
namespace kernel {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Kernel to initialize tensor to uniform random distribution
template <typename T>
__global__ void TensorInitializeUniform(
Distribution dist, int64_t seed, int dim_contiguous, int dim_strided, T *tensor, int ldm) {
__shared__ curandState_t rng_state[1024];
uint64_t gtid = threadIdx.x + blockIdx.x * blockDim.x + blockIdx.y * gridDim.x * blockDim.x;
curand_init(seed, gtid, 0, &rng_state[threadIdx.x]);
int c_idx = blockIdx.x * blockDim.x + threadIdx.x;
int s_idx = blockIdx.y * blockDim.x;
tensor += s_idx * ldm + c_idx;
for (int s_offset = 0; s_offset < blockDim.x; ++s_offset, ++s_idx) {
if (s_idx < dim_strided && c_idx < dim_contiguous) {
double range = dist.uniform.max - dist.uniform.min;
double rnd = curand_uniform(&rng_state[threadIdx.x]);
rnd = dist.uniform.min + range * rnd;
// Random values are cast to integer after scaling by a power of two to facilitate error
// testing
if (dist.int_scale >= 0) {
rnd = double(int(rnd * double(1 << dist.int_scale)));
*tensor = T(rnd / double(1 << dist.int_scale));
} else {
*tensor = T(rnd);
}
tensor += ldm;
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Kernel to initialize tensor to uniform distribution
template <typename T>
__global__ void TensorInitializeGaussian(
Distribution dist, int64_t seed, int dim_contiguous, int dim_strided, T *tensor, int ldm) {
__shared__ curandState_t rng_state[1024];
uint64_t gtid = threadIdx.x + blockIdx.x * blockDim.x + blockIdx.y * gridDim.x * blockDim.x;
curand_init(seed, gtid, 0, &rng_state[threadIdx.x]);
int c_idx = blockIdx.x * blockDim.x + threadIdx.x;
int s_idx = blockIdx.y * blockDim.x;
tensor += s_idx * ldm + c_idx;
for (int s_offset = 0; s_offset < blockDim.x; ++s_offset, ++s_idx) {
if (s_idx < dim_strided && c_idx < dim_contiguous) {
// Random values are cast to integer after scaling by a power of two to facilitate error
// testing
double rnd = curand_normal(&rng_state[threadIdx.x]);
rnd = dist.gaussian.mean + dist.gaussian.stddev * rnd;
if (dist.int_scale >= 0) {
rnd = double(int(rnd * double(1 << dist.int_scale)));
*tensor = T(rnd / double(1 << dist.int_scale));
} else {
*tensor = T(rnd);
}
}
}
}
/// Kernel to initialize tensor to an identity matrix
template <typename T>
__global__ void TensorInitializeLinear(
Distribution dist, int64_t seed, int dim_contiguous, int dim_strided, T *tensor, int ldm) {
__shared__ curandState_t rng_state[1024];
uint64_t gtid = threadIdx.x + blockIdx.x * blockDim.x + blockIdx.y * gridDim.x * blockDim.x;
curand_init(seed, gtid, 0, &rng_state[threadIdx.x]);
int c_idx = blockIdx.x * blockDim.x + threadIdx.x;
int s_idx = blockIdx.y * blockDim.x;
tensor += s_idx * ldm + c_idx;
for (int s_offset = 0; s_offset < blockDim.x; ++s_offset, ++s_idx) {
if (s_idx < dim_strided && c_idx < dim_contiguous) {
*tensor =
dist.linear.offset + dist.linear.delta_row * c_idx + dist.linear.delta_column * s_idx;
}
}
}
/// Kernel to initialize tensor to an identity matrix
template <typename T>
__global__ void TensorInitializeIdentity(
Distribution dist, int64_t seed, int dim_contiguous, int dim_strided, T *tensor, int ldm) {
__shared__ curandState_t rng_state[1024];
uint64_t gtid = threadIdx.x + blockIdx.x * blockDim.x + blockIdx.y * gridDim.x * blockDim.x;
curand_init(seed, gtid, 0, &rng_state[threadIdx.x]);
int c_idx = blockIdx.x * blockDim.x + threadIdx.x;
int s_idx = blockIdx.y * blockDim.x;
tensor += s_idx * ldm + c_idx;
for (int s_offset = 0; s_offset < blockDim.x; ++s_offset, ++s_idx) {
if (s_idx < dim_strided && c_idx < dim_contiguous) {
*tensor = (c_idx == s_idx ? T(1) : T(0));
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace device
} // namespace reference
} // namespace cutlass