flash-attention/tests/test_rotary.py

213 lines
9.0 KiB
Python
Raw Normal View History

2022-11-05 13:42:01 +08:00
import math
2023-09-03 17:44:59 +08:00
import random
2022-11-05 13:42:01 +08:00
2023-08-19 11:59:35 +08:00
import pytest
2022-11-05 13:42:01 +08:00
import torch
import torch.nn.functional as F
from einops import rearrange
2023-09-03 17:44:59 +08:00
from flash_attn.layers.rotary import apply_rotary_emb, apply_rotary_emb_torch
from flash_attn.layers.rotary import apply_rotary_emb_qkv_, apply_rotary_emb_kv_
2022-11-05 13:42:01 +08:00
2023-08-19 11:59:35 +08:00
is_sm8x = torch.cuda.get_device_capability("cuda") >= (8, 0)
2022-11-05 13:42:01 +08:00
2023-08-19 11:59:35 +08:00
@pytest.mark.parametrize(
"dtype", ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])
)
2022-11-05 13:42:01 +08:00
# @pytest.mark.parametrize('dtype', ([torch.float16]))
2023-09-03 17:44:59 +08:00
@pytest.mark.parametrize("seqlen_offsets_type", [0, int, torch.Tensor])
# @pytest.mark.parametrize("seqlen_offsets_type", [0])
2023-08-19 11:59:35 +08:00
@pytest.mark.parametrize("rotary_fraction", [1.0, 0.5])
2023-09-03 17:44:59 +08:00
# @pytest.mark.parametrize('rotary_fraction', [1.0])
@pytest.mark.parametrize("interleaved", [False, True])
# @pytest.mark.parametrize('interleaved', [False])
2023-08-19 11:59:35 +08:00
@pytest.mark.parametrize("inplace", [False, True])
2022-11-05 13:42:01 +08:00
# @pytest.mark.parametrize('inplace', [False])
2023-09-03 17:44:59 +08:00
def test_rotary_emb_func(inplace, interleaved, rotary_fraction, seqlen_offsets_type, dtype):
2022-11-05 13:42:01 +08:00
rtol = 1e-3
batch_size = 32
nheads = 4
seqlen = 217
headdim = 128
2023-09-03 17:44:59 +08:00
device = "cuda"
torch.manual_seed(42)
2023-08-19 11:59:35 +08:00
x = torch.randn(
2023-09-03 17:44:59 +08:00
batch_size, seqlen, nheads, headdim, dtype=dtype, device=device, requires_grad=True
2023-08-19 11:59:35 +08:00
)
2022-11-05 13:42:01 +08:00
x_pt = x.detach().clone().requires_grad_()
rotary_dim = int(rotary_fraction * headdim)
assert rotary_dim % 2 == 0
2023-09-03 17:44:59 +08:00
angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
2022-11-05 13:42:01 +08:00
cos = torch.cos(angle).to(dtype=dtype)
sin = torch.sin(angle).to(dtype=dtype)
2023-09-03 17:44:59 +08:00
if seqlen_offsets_type == 0:
seqlen_offsets = 0
elif seqlen_offsets_type is int:
seqlen_offsets = torch.randint(0, seqlen + 1, (1, )).item()
elif seqlen_offsets_type is torch.Tensor:
seqlen_offsets = torch.randint(
0, seqlen + 1, (batch_size,), dtype=torch.int32, device=device
)
out = apply_rotary_emb(
x, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved, inplace=inplace
)
if seqlen_offsets_type is torch.Tensor:
arange = rearrange(torch.arange(seqlen, device=device), "s -> 1 s")
idx = rearrange(seqlen_offsets, "b -> b 1") + arange
cos_pt = rearrange(cos[idx.flatten()], "(b s) d -> b s d", b=batch_size)
sin_pt = rearrange(sin[idx.flatten()], "(b s) d -> b s d", b=batch_size)
else:
cos_pt = cos[seqlen_offsets : seqlen_offsets + seqlen]
sin_pt = sin[seqlen_offsets : seqlen_offsets + seqlen]
out_pt = apply_rotary_emb_torch(
x_pt.float(), cos_pt.float(), sin_pt.float(), interleaved=interleaved
).to(dtype=dtype)
print(f"Output max diff: {(out - out_pt).abs().max().item()}")
2022-11-05 13:42:01 +08:00
g = torch.randn_like(out)
g_pt = g.clone() # If inplace=True, we might modify the gradient inplace
out.backward(g)
out_pt.backward(g_pt)
2023-09-03 17:44:59 +08:00
print(f"Grad max diff: {(x.grad - x_pt.grad).abs().max().item()}")
if not inplace:
assert torch.equal(x, x_pt)
# Numerical error if we just do any arithmetic
atol = ((out_pt + 0.3 - 0.3) - out_pt).abs().max().item()
assert torch.allclose(out, out_pt, rtol=rtol, atol=2 * atol)
2022-11-05 13:42:01 +08:00
atol = ((x_pt.grad + 0.3 - 0.3) - x_pt.grad).abs().max().item()
assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=2 * atol)
2023-09-03 17:44:59 +08:00
@pytest.mark.parametrize(
"dtype", ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])
)
# @pytest.mark.parametrize('dtype', ([torch.float16]))
@pytest.mark.parametrize("seqlen_offsets_type", [0, int, torch.Tensor])
# @pytest.mark.parametrize("seqlen_offsets_type", [0])
@pytest.mark.parametrize("rotary_fraction", [1.0, 0.5])
# @pytest.mark.parametrize('rotary_fraction', [1.0])
@pytest.mark.parametrize("interleaved", [False, True])
# @pytest.mark.parametrize('interleaved', [False])
def test_rotary_emb_qkv(interleaved, rotary_fraction, seqlen_offsets_type, dtype):
rtol = 1e-3
batch_size = 32
nheads = 4
seqlen = 512
headdim = 128
device = "cuda"
torch.manual_seed(42)
qkv = torch.randn(
batch_size, seqlen, 3, nheads, headdim, dtype=dtype, device=device, requires_grad=True
)
qkv_pt = qkv.detach().clone().requires_grad_()
rotary_dim = int(rotary_fraction * headdim)
assert rotary_dim % 2 == 0
angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
cos = torch.cos(angle).to(dtype=dtype)
sin = torch.sin(angle).to(dtype=dtype)
if seqlen_offsets_type == 0:
seqlen_offsets = 0
elif seqlen_offsets_type is int:
seqlen_offsets = torch.randint(0, seqlen + 1, (1, )).item()
elif seqlen_offsets_type is torch.Tensor:
seqlen_offsets = torch.randint(
0, seqlen + 1, (batch_size,), dtype=torch.int32, device=device
)
out = apply_rotary_emb_qkv_(
qkv, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved
)
if seqlen_offsets_type is torch.Tensor:
arange = rearrange(torch.arange(seqlen, device=device), "s -> 1 s")
idx = rearrange(seqlen_offsets, "b -> b 1") + arange
cos_pt = rearrange(cos[idx.flatten()], "(b s) d -> b s d", b=batch_size)
sin_pt = rearrange(sin[idx.flatten()], "(b s) d -> b s d", b=batch_size)
else:
cos_pt = cos[seqlen_offsets : seqlen_offsets + seqlen]
sin_pt = sin[seqlen_offsets : seqlen_offsets + seqlen]
q_pt = apply_rotary_emb_torch(
qkv_pt[:, :, 0].float(), cos_pt.float(), sin_pt.float(), interleaved=interleaved
).to(dtype=dtype)
k_pt = apply_rotary_emb_torch(
qkv_pt[:, :, 1].float(), cos_pt.float(), sin_pt.float(), interleaved=interleaved
).to(dtype=dtype)
out_pt = torch.stack([q_pt, k_pt, qkv_pt[:, :, 2]], dim=2)
print(f"Output max diff: {(out - out_pt).abs().max().item()}")
g = torch.randn_like(out)
g_pt = g.clone() # Since inplace=True, we modify the gradient inplace
out.backward(g)
out_pt.backward(g_pt)
print(f"Grad max diff: {(qkv.grad - qkv_pt.grad).abs().max().item()}")
# Numerical error if we just do any arithmetic
atol = ((out_pt + 0.3 - 0.3) - out_pt).abs().max().item()
assert torch.allclose(out, out_pt, rtol=rtol, atol=2 * atol)
atol = ((qkv_pt.grad + 0.3 - 0.3) - qkv_pt.grad).abs().max().item()
assert torch.allclose(qkv.grad, qkv_pt.grad, rtol=rtol, atol=2 * atol)
@pytest.mark.parametrize(
"dtype", ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])
)
# @pytest.mark.parametrize('dtype', ([torch.float16]))
@pytest.mark.parametrize("seqlen_offsets_type", [0, int, torch.Tensor])
# @pytest.mark.parametrize("seqlen_offsets_type", [0])
@pytest.mark.parametrize("rotary_fraction", [1.0, 0.5])
# @pytest.mark.parametrize('rotary_fraction', [1.0])
@pytest.mark.parametrize("interleaved", [False, True])
# @pytest.mark.parametrize('interleaved', [False])
def test_rotary_emb_kv(interleaved, rotary_fraction, seqlen_offsets_type, dtype):
rtol = 1e-3
batch_size = 32
nheads = 4
seqlen = 781
headdim = 64
device = "cuda"
torch.manual_seed(42)
kv = torch.randn(
batch_size, seqlen, 2, nheads, headdim, dtype=dtype, device=device, requires_grad=True
)
kv_pt = kv.detach().clone().requires_grad_()
rotary_dim = int(rotary_fraction * headdim)
assert rotary_dim % 2 == 0
angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
cos = torch.cos(angle).to(dtype=dtype)
sin = torch.sin(angle).to(dtype=dtype)
if seqlen_offsets_type == 0:
seqlen_offsets = 0
elif seqlen_offsets_type is int:
seqlen_offsets = torch.randint(0, seqlen + 1, (1, )).item()
elif seqlen_offsets_type is torch.Tensor:
seqlen_offsets = torch.randint(
0, seqlen + 1, (batch_size,), dtype=torch.int32, device=device
)
out = apply_rotary_emb_kv_(
kv, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved
)
if seqlen_offsets_type is torch.Tensor:
arange = rearrange(torch.arange(seqlen, device=device), "s -> 1 s")
idx = rearrange(seqlen_offsets, "b -> b 1") + arange
cos_pt = rearrange(cos[idx.flatten()], "(b s) d -> b s d", b=batch_size)
sin_pt = rearrange(sin[idx.flatten()], "(b s) d -> b s d", b=batch_size)
else:
cos_pt = cos[seqlen_offsets : seqlen_offsets + seqlen]
sin_pt = sin[seqlen_offsets : seqlen_offsets + seqlen]
k_pt = apply_rotary_emb_torch(
kv_pt[:, :, 0].float(), cos_pt.float(), sin_pt.float(), interleaved=interleaved
).to(dtype=dtype)
out_pt = torch.stack([k_pt, kv_pt[:, :, 1]], dim=2)
print(f"Output max diff: {(out - out_pt).abs().max().item()}")
g = torch.randn_like(out)
g_pt = g.clone() # Since inplace=True, we modify the gradient inplace
out.backward(g)
out_pt.backward(g_pt)
print(f"Grad max diff: {(kv.grad - kv_pt.grad).abs().max().item()}")
# Numerical error if we just do any arithmetic
atol = ((out_pt + 0.3 - 0.3) - out_pt).abs().max().item()
assert torch.allclose(out, out_pt, rtol=rtol, atol=2 * atol)
atol = ((kv_pt.grad + 0.3 - 0.3) - kv_pt.grad).abs().max().item()
assert torch.allclose(kv.grad, kv_pt.grad, rtol=rtol, atol=2 * atol)