2023-07-17 20:26:11 +08:00
/******************************************************************************
2024-01-22 06:42:55 +08:00
* Copyright ( c ) 2024 , Tri Dao .
2023-07-17 20:26:11 +08:00
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2023-09-13 03:37:10 +08:00
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
# include <torch/python.h>
# include <torch/nn/functional.h>
2023-07-17 20:26:11 +08:00
# include <ATen/cuda/CUDAContext.h>
# include <c10/cuda/CUDAGuard.h>
# include <cutlass/numeric_types.h>
# include "flash.h"
# include "static_switch.h"
2023-09-16 16:20:16 +08:00
# define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
2023-07-17 20:26:11 +08:00
# define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
2023-09-16 16:20:16 +08:00
# define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
2023-07-17 20:26:11 +08:00
void set_params_fprop ( Flash_fwd_params & params ,
// sizes
const size_t b ,
const size_t seqlen_q ,
const size_t seqlen_k ,
const size_t seqlen_q_rounded ,
const size_t seqlen_k_rounded ,
const size_t h ,
const size_t h_k ,
const size_t d ,
const size_t d_rounded ,
// device pointers
const at : : Tensor q ,
const at : : Tensor k ,
const at : : Tensor v ,
at : : Tensor out ,
void * cu_seqlens_q_d ,
void * cu_seqlens_k_d ,
2023-11-27 16:41:23 +08:00
void * seqused_k ,
2023-07-17 20:26:11 +08:00
void * p_d ,
void * softmax_lse_d ,
float p_dropout ,
float softmax_scale ,
2023-09-25 13:48:39 +08:00
int window_size_left ,
2024-01-22 07:28:36 +08:00
int window_size_right ,
2024-06-27 17:38:13 +08:00
bool seqlenq_ngroups_swapped = false ,
const bool unpadded_lse = false ) {
2023-07-17 20:26:11 +08:00
// Reset the parameters
2024-03-15 15:48:54 +08:00
params = { } ;
2023-07-17 20:26:11 +08:00
params . is_bf16 = q . dtype ( ) = = torch : : kBFloat16 ;
// Set the pointers and strides.
params . q_ptr = q . data_ptr ( ) ;
params . k_ptr = k . data_ptr ( ) ;
params . v_ptr = v . data_ptr ( ) ;
// All stride are in elements, not bytes.
params . q_row_stride = q . stride ( - 3 ) ;
params . k_row_stride = k . stride ( - 3 ) ;
params . v_row_stride = v . stride ( - 3 ) ;
params . q_head_stride = q . stride ( - 2 ) ;
params . k_head_stride = k . stride ( - 2 ) ;
params . v_head_stride = v . stride ( - 2 ) ;
params . o_ptr = out . data_ptr ( ) ;
params . o_row_stride = out . stride ( - 3 ) ;
params . o_head_stride = out . stride ( - 2 ) ;
if ( cu_seqlens_q_d = = nullptr ) {
params . q_batch_stride = q . stride ( 0 ) ;
params . k_batch_stride = k . stride ( 0 ) ;
params . v_batch_stride = v . stride ( 0 ) ;
params . o_batch_stride = out . stride ( 0 ) ;
2024-01-22 07:28:36 +08:00
if ( seqlenq_ngroups_swapped ) {
params . q_batch_stride * = seqlen_q ;
params . o_batch_stride * = seqlen_q ;
}
2023-07-17 20:26:11 +08:00
}
params . cu_seqlens_q = static_cast < int * > ( cu_seqlens_q_d ) ;
params . cu_seqlens_k = static_cast < int * > ( cu_seqlens_k_d ) ;
2023-11-27 16:41:23 +08:00
params . seqused_k = static_cast < int * > ( seqused_k ) ;
2023-07-17 20:26:11 +08:00
// P = softmax(QK^T)
params . p_ptr = p_d ;
// Softmax sum
params . softmax_lse_ptr = softmax_lse_d ;
// Set the dimensions.
params . b = b ;
params . h = h ;
params . h_k = h_k ;
params . h_h_k_ratio = h / h_k ;
params . seqlen_q = seqlen_q ;
params . seqlen_k = seqlen_k ;
params . seqlen_q_rounded = seqlen_q_rounded ;
params . seqlen_k_rounded = seqlen_k_rounded ;
params . d = d ;
params . d_rounded = d_rounded ;
// Set the different scale values.
params . scale_softmax = softmax_scale ;
params . scale_softmax_log2 = softmax_scale * M_LOG2E ;
// Set this to probability of keeping an element to simplify things.
params . p_dropout = 1.f - p_dropout ;
// Convert p from float to int so we don't have to convert the random uint to float to compare.
// [Minor] We want to round down since when we do the comparison we use <= instead of <
// params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
// params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
params . p_dropout_in_uint8_t = uint8_t ( std : : floor ( params . p_dropout * 255.0 ) ) ;
params . rp_dropout = 1.f / params . p_dropout ;
params . scale_softmax_rp_dropout = params . rp_dropout * params . scale_softmax ;
TORCH_CHECK ( p_dropout < 1.f ) ;
2024-01-30 12:44:23 +08:00
# ifdef FLASHATTENTION_DISABLE_DROPOUT
TORCH_CHECK ( p_dropout = = 0.0f , " This flash attention build does not support dropout. " ) ;
# endif
2023-07-17 20:26:11 +08:00
2023-09-25 13:48:39 +08:00
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
params . is_causal = window_size_left < 0 & & window_size_right = = 0 ;
if ( window_size_left < 0 & & window_size_right > = 0 ) { window_size_left = seqlen_k ; }
if ( window_size_left > = 0 & & window_size_right < 0 ) { window_size_right = seqlen_k ; }
params . window_size_left = window_size_left ;
params . window_size_right = window_size_right ;
2024-01-30 12:44:23 +08:00
# ifdef FLASHATTENTION_DISABLE_LOCAL
TORCH_CHECK ( params . is_causal | | ( window_size_left < 0 & & window_size_right < 0 ) ,
" This flash attention build does not support local attention. " ) ;
# endif
2023-09-04 15:00:59 +08:00
params . is_seqlens_k_cumulative = true ;
2024-01-30 12:44:23 +08:00
# ifdef FLASHATTENTION_DISABLE_UNEVEN_K
TORCH_CHECK ( d = = d_rounded , " This flash attention build does not support headdim not being a multiple of 32. " ) ;
# endif
2024-06-27 17:38:13 +08:00
params . unpadded_lse = unpadded_lse ;
params . seqlenq_ngroups_swapped = seqlenq_ngroups_swapped ;
2023-07-17 20:26:11 +08:00
}
void set_params_dgrad ( Flash_bwd_params & params ,
// sizes
const size_t b ,
const size_t seqlen_q ,
const size_t seqlen_k ,
const size_t seqlen_q_rounded ,
const size_t seqlen_k_rounded ,
const size_t h ,
const size_t h_k ,
const size_t d ,
const size_t d_rounded ,
// device pointers
const at : : Tensor q ,
const at : : Tensor k ,
const at : : Tensor v ,
const at : : Tensor out ,
const at : : Tensor dout ,
at : : Tensor dq ,
at : : Tensor dk ,
at : : Tensor dv ,
void * cu_seqlens_q_d ,
void * cu_seqlens_k_d ,
void * dq_accum_d ,
void * dk_accum_d ,
void * dv_accum_d ,
void * softmax_lse_d ,
void * dsoftmax_sum_d ,
float p_dropout ,
float softmax_scale ,
2023-09-25 13:48:39 +08:00
int window_size_left ,
2023-12-24 09:46:06 +08:00
int window_size_right ,
2024-06-27 17:38:13 +08:00
bool deterministic ,
const bool unpadded_lse ) {
2023-07-17 20:26:11 +08:00
set_params_fprop ( params ,
b , seqlen_q , seqlen_k , seqlen_q_rounded , seqlen_k_rounded , h , h_k , d , d_rounded ,
q , k , v , out ,
cu_seqlens_q_d ,
cu_seqlens_k_d ,
nullptr ,
2023-11-27 16:41:23 +08:00
nullptr ,
2023-07-17 20:26:11 +08:00
softmax_lse_d ,
p_dropout ,
softmax_scale ,
2023-09-25 13:48:39 +08:00
window_size_left ,
2024-06-27 17:38:13 +08:00
window_size_right ,
false , // seqlenq_ngroups_swapped
unpadded_lse ) ;
2023-07-17 20:26:11 +08:00
// Set the pointers and strides.
params . do_ptr = dout . data_ptr ( ) ;
params . do_row_stride = dout . stride ( - 3 ) ;
params . do_head_stride = dout . stride ( - 2 ) ;
params . dq_ptr = dq . data_ptr ( ) ;
params . dk_ptr = dk . data_ptr ( ) ;
params . dv_ptr = dv . data_ptr ( ) ;
params . dq_row_stride = dq . stride ( - 3 ) ;
params . dk_row_stride = dk . stride ( - 3 ) ;
params . dv_row_stride = dv . stride ( - 3 ) ;
params . dq_head_stride = dq . stride ( - 2 ) ;
params . dk_head_stride = dk . stride ( - 2 ) ;
params . dv_head_stride = dv . stride ( - 2 ) ;
if ( cu_seqlens_q_d = = nullptr ) {
params . do_batch_stride = dout . stride ( 0 ) ;
params . dq_batch_stride = dq . stride ( 0 ) ;
params . dk_batch_stride = dk . stride ( 0 ) ;
params . dv_batch_stride = dv . stride ( 0 ) ;
}
params . dq_accum_ptr = dq_accum_d ;
params . dk_accum_ptr = dk_accum_d ;
params . dv_accum_ptr = dv_accum_d ;
// Softmax sum
params . dsoftmax_sum = dsoftmax_sum_d ;
2023-12-24 09:46:06 +08:00
params . deterministic = deterministic ;
2023-07-17 20:26:11 +08:00
}
2023-09-04 15:00:59 +08:00
void run_mha_fwd ( Flash_fwd_params & params , cudaStream_t stream , bool force_split_kernel = false ) {
2023-07-17 20:26:11 +08:00
FP16_SWITCH ( ! params . is_bf16 , [ & ] {
2024-01-22 06:42:55 +08:00
HEADDIM_SWITCH ( params . d , [ & ] {
2023-09-04 15:00:59 +08:00
if ( params . num_splits < = 1 & & ! force_split_kernel ) { // If we don't set it num_splits == 0
2023-08-29 15:58:29 +08:00
run_mha_fwd_ < elem_type , kHeadDim > ( params , stream ) ;
} else {
run_mha_fwd_splitkv_dispatch < elem_type , kHeadDim > ( params , stream ) ;
}
2023-07-17 20:26:11 +08:00
} ) ;
} ) ;
}
2023-08-29 15:58:29 +08:00
// Find the number of splits that maximizes the occupancy. For example, if we have
// batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is
// better than having 3 splits (efficiency = 0.67). However, we also don't want too many
// splits as that would incur more HBM reads/writes.
// So we find the best efficiency, then find the smallest number of splits that gets 85%
// of the best efficiency.
inline int num_splits_heuristic ( int batch_nheads_mblocks , int num_SMs , int num_n_blocks , int max_splits ) {
// If we have enough to almost fill the SMs, then just use 1 split
if ( batch_nheads_mblocks > = 0.8f * num_SMs ) { return 1 ; }
max_splits = std : : min ( { max_splits , num_SMs , num_n_blocks } ) ;
float max_efficiency = 0.f ;
std : : vector < float > efficiency ;
efficiency . reserve ( max_splits ) ;
auto ceildiv = [ ] ( int a , int b ) { return ( a + b - 1 ) / b ; } ;
// Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
// we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
// (i.e. it's 11 splits anyway).
// So we check if the number of blocks per split is the same as the previous num_splits.
auto is_split_eligible = [ & ceildiv , & num_n_blocks ] ( int num_splits ) {
return num_splits = = 1 | | ceildiv ( num_n_blocks , num_splits ) ! = ceildiv ( num_n_blocks , num_splits - 1 ) ;
} ;
for ( int num_splits = 1 ; num_splits < = max_splits ; num_splits + + ) {
if ( ! is_split_eligible ( num_splits ) ) {
efficiency . push_back ( 0.f ) ;
} else {
float n_waves = float ( batch_nheads_mblocks * num_splits ) / num_SMs ;
float eff = n_waves / ceil ( n_waves ) ;
// printf("num_splits = %d, eff = %f\n", num_splits, eff);
if ( eff > max_efficiency ) { max_efficiency = eff ; }
efficiency . push_back ( eff ) ;
}
}
for ( int num_splits = 1 ; num_splits < = max_splits ; num_splits + + ) {
if ( ! is_split_eligible ( num_splits ) ) { continue ; }
if ( efficiency [ num_splits - 1 ] > = 0.85 * max_efficiency ) {
// printf("num_splits chosen = %d\n", num_splits);
return num_splits ;
}
}
return 1 ;
}
2024-01-22 07:28:36 +08:00
void set_params_splitkv ( Flash_fwd_params & params , const int batch_size ,
2024-01-23 14:47:30 +08:00
const int num_heads , const int head_size , const int max_seqlen_k , const int max_seqlen_q ,
const int head_size_rounded , const float p_dropout ,
const int num_splits , cudaDeviceProp * dprops , struct c10 : : TensorOptions opts ) {
2024-01-22 07:28:36 +08:00
// This needs to match with run_mha_fwd_splitkv_dispatch
const int block_n = head_size < = 64 ? 256 : ( head_size < = 128 ? 128 : 64 ) ;
const int num_n_blocks = ( max_seqlen_k + block_n - 1 ) / block_n ;
// Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel.
// In any case we don't expect seqlen_q to be larger than 64 for inference.
const int num_m_blocks = ( max_seqlen_q + 64 - 1 ) / 64 ;
params . num_splits = num_splits ;
if ( p_dropout = = 0.0f ) { // SplitKV is not implemented for dropout
if ( num_splits < 1 ) {
2024-04-08 11:04:39 +08:00
// We multiply number of SMs by 2 to hard-code the fact that we're using 128 threads per block.
params . num_splits = num_splits_heuristic ( batch_size * num_heads * num_m_blocks , dprops - > multiProcessorCount * 2 , num_n_blocks , 128 ) ;
2024-01-22 07:28:36 +08:00
}
if ( params . num_splits > 1 ) {
at : : Tensor softmax_lse_accum = torch : : empty ( { params . num_splits , batch_size , num_heads , max_seqlen_q } , opts . dtype ( at : : kFloat ) ) ;
at : : Tensor out_accum = torch : : empty ( { params . num_splits , batch_size , num_heads , max_seqlen_q , head_size_rounded } , opts . dtype ( at : : kFloat ) ) ;
params . softmax_lseaccum_ptr = softmax_lse_accum . data_ptr ( ) ;
params . oaccum_ptr = out_accum . data_ptr ( ) ;
}
TORCH_CHECK ( params . num_splits < = 128 , " num_splits > 128 not supported " ) ;
}
}
2024-01-30 12:44:23 +08:00
void set_params_alibi ( Flash_fwd_params & params , c10 : : optional < at : : Tensor > & alibi_slopes_ , int batch_size , int num_heads ) {
# ifdef FLASHATTENTION_DISABLE_ALIBI
TORCH_CHECK ( ! alibi_slopes_ . has_value ( ) , " This flash attention build does not support alibi. " ) ;
params . alibi_slopes_ptr = nullptr ;
# else
if ( alibi_slopes_ . has_value ( ) ) {
auto alibi_slopes = alibi_slopes_ . value ( ) ;
TORCH_CHECK ( alibi_slopes . dtype ( ) = = torch : : kFloat32 , " ALiBi slopes must have dtype fp32 " ) ;
CHECK_DEVICE ( alibi_slopes ) ;
TORCH_CHECK ( alibi_slopes . stride ( - 1 ) = = 1 , " ALiBi slopes tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( alibi_slopes . sizes ( ) = = torch : : IntArrayRef ( { num_heads } ) | | alibi_slopes . sizes ( ) = = torch : : IntArrayRef ( { batch_size , num_heads } ) ) ;
params . alibi_slopes_ptr = alibi_slopes . data_ptr ( ) ;
params . alibi_slopes_batch_stride = alibi_slopes . dim ( ) = = 2 ? alibi_slopes . stride ( 0 ) : 0 ;
} else {
params . alibi_slopes_ptr = nullptr ;
}
# endif
}
2023-07-17 20:26:11 +08:00
std : : vector < at : : Tensor >
2023-09-19 05:52:16 +08:00
mha_fwd ( at : : Tensor & q , // batch_size x seqlen_q x num_heads x head_size
2023-07-17 20:26:11 +08:00
const at : : Tensor & k , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & v , // batch_size x seqlen_k x num_heads_k x head_size
c10 : : optional < at : : Tensor > & out_ , // batch_size x seqlen_q x num_heads x head_size
2023-12-22 14:27:40 +08:00
c10 : : optional < at : : Tensor > & alibi_slopes_ , // num_heads or batch_size x num_heads
2023-07-17 20:26:11 +08:00
const float p_dropout ,
const float softmax_scale ,
2023-09-19 05:52:16 +08:00
bool is_causal ,
2023-12-24 12:59:26 +08:00
int window_size_left ,
2023-09-25 13:48:39 +08:00
int window_size_right ,
2023-07-17 20:26:11 +08:00
const bool return_softmax ,
c10 : : optional < at : : Generator > gen_ ) {
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
bool is_sm8x = dprops - > major = = 8 & & dprops - > minor > = 0 ;
bool is_sm90 = dprops - > major = = 9 & & dprops - > minor = = 0 ;
TORCH_CHECK ( is_sm90 | | is_sm8x , " FlashAttention only supports Ampere GPUs or newer. " ) ;
// We will support Turing in the near future
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
auto q_dtype = q . dtype ( ) ;
TORCH_CHECK ( q_dtype = = torch : : kFloat16 | | q_dtype = = torch : : kBFloat16 ,
" FlashAttention only support fp16 and bf16 data type " ) ;
if ( q_dtype = = torch : : kBFloat16 ) {
TORCH_CHECK ( is_sm90 | | is_sm8x , " bfloat16 is only supported on Ampere GPUs or newer " ) ;
}
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
const auto sizes = q . sizes ( ) ;
const int batch_size = sizes [ 0 ] ;
2023-09-19 05:52:16 +08:00
int seqlen_q = sizes [ 1 ] ;
int num_heads = sizes [ 2 ] ;
2023-07-17 20:26:11 +08:00
const int head_size_og = sizes [ 3 ] ;
const int seqlen_k = k . size ( 1 ) ;
const int num_heads_k = k . size ( 2 ) ;
TORCH_CHECK ( batch_size > 0 , " batch size must be postive " ) ;
TORCH_CHECK ( head_size_og < = 256 , " FlashAttention forward only supports head dimension at most 256 " ) ;
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
2023-12-24 12:59:26 +08:00
if ( window_size_left > = seqlen_k ) { window_size_left = - 1 ; }
if ( window_size_right > = seqlen_k ) { window_size_right = - 1 ; }
2023-12-22 14:27:40 +08:00
// causal=true is the same as causal=false in this case
if ( seqlen_q = = 1 & & ! alibi_slopes_ . has_value ( ) ) { is_causal = false ; }
2023-09-25 13:48:39 +08:00
if ( is_causal ) { window_size_right = 0 ; }
2023-09-19 05:52:16 +08:00
2023-09-21 14:38:22 +08:00
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
// H/t Daniel Haziza
2023-12-22 14:27:40 +08:00
const int seqlenq_ngroups_swapped = seqlen_q = = 1 & & num_heads > num_heads_k & & window_size_left < 0 & & window_size_right < 0 & & p_dropout = = 0.f & & head_size_og % 8 = = 0 & & ! alibi_slopes_ . has_value ( ) ;
2024-04-08 11:04:39 +08:00
const int ngroups = num_heads / num_heads_k ;
2023-09-21 14:38:22 +08:00
if ( seqlenq_ngroups_swapped ) {
q = q . reshape ( { batch_size , num_heads_k , ngroups , head_size_og } ) . transpose ( 1 , 2 ) ;
seqlen_q = ngroups ;
num_heads = num_heads_k ;
2023-09-19 05:52:16 +08:00
}
2023-07-17 20:26:11 +08:00
CHECK_SHAPE ( q , batch_size , seqlen_q , num_heads , head_size_og ) ;
CHECK_SHAPE ( k , batch_size , seqlen_k , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( v , batch_size , seqlen_k , num_heads_k , head_size_og ) ;
at : : Tensor q_padded , k_padded , v_padded ;
if ( head_size_og % 8 ! = 0 ) {
q_padded = torch : : nn : : functional : : pad ( q , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
k_padded = torch : : nn : : functional : : pad ( k , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
v_padded = torch : : nn : : functional : : pad ( v , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
q_padded = q ;
k_padded = k ;
v_padded = v ;
}
at : : Tensor out ;
if ( out_ . has_value ( ) ) {
out = out_ . value ( ) ;
TORCH_CHECK ( out . dtype ( ) = = q_dtype , " Output must have the same dtype as inputs " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( out ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " Output tensor must have contiguous last dimension " ) ;
2024-04-08 11:04:39 +08:00
CHECK_SHAPE ( out , batch_size , sizes [ 1 ] , sizes [ 2 ] , head_size_og ) ;
if ( seqlenq_ngroups_swapped ) {
out = out . reshape ( { batch_size , num_heads_k , ngroups , head_size_og } ) . transpose ( 1 , 2 ) ;
}
2023-07-17 20:26:11 +08:00
if ( head_size_og % 8 ! = 0 ) { out = torch : : empty_like ( q_padded ) ; }
} else {
out = torch : : empty_like ( q_padded ) ;
}
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
const int head_size = round_multiple ( head_size_og , 8 ) ;
const int head_size_rounded = round_multiple ( head_size , 32 ) ;
const int seqlen_q_rounded = round_multiple ( seqlen_q , 128 ) ;
const int seqlen_k_rounded = round_multiple ( seqlen_k , 128 ) ;
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
auto softmax_lse = torch : : empty ( { batch_size , num_heads , seqlen_q } , opts . dtype ( at : : kFloat ) ) ;
at : : Tensor p ;
// Only return softmax if there's dropout to reduce compilation time
if ( return_softmax ) {
TORCH_CHECK ( p_dropout > 0.0f , " return_softmax is only supported when p_dropout > 0.0 " ) ;
p = torch : : empty ( { batch_size , num_heads , seqlen_q_rounded , seqlen_k_rounded } , opts ) ;
}
Flash_fwd_params params ;
set_params_fprop ( params ,
batch_size ,
seqlen_q , seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q_padded , k_padded , v_padded , out ,
/*cu_seqlens_q_d=*/ nullptr ,
/*cu_seqlens_k_d=*/ nullptr ,
2023-11-27 16:41:23 +08:00
/*seqused_k=*/ nullptr ,
2023-07-17 20:26:11 +08:00
return_softmax ? p . data_ptr ( ) : nullptr ,
softmax_lse . data_ptr ( ) ,
p_dropout ,
softmax_scale ,
2023-09-25 13:48:39 +08:00
window_size_left ,
window_size_right ) ;
2023-07-17 20:26:11 +08:00
2024-01-22 07:28:36 +08:00
set_params_splitkv ( params , batch_size , num_heads ,
head_size , seqlen_k , seqlen_q ,
head_size_rounded , p_dropout , /*num_splits*/ 0 , dprops , opts ) ;
2023-08-29 15:58:29 +08:00
2023-07-28 07:11:34 +08:00
// number of times random will be generated per thread, to offset philox counter in thc random
// state
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
int64_t counter_offset = params . b * params . h * 32 ;
auto options = torch : : TensorOptions ( ) . dtype ( torch : : kFloat32 ) . device ( torch : : kCUDA ) ;
auto rng_state = torch : : empty ( { 2 } , options . dtype ( torch : : kInt64 ) ) ;
// Forward kernel will populate memory with the seed and offset.
params . rng_state = reinterpret_cast < uint64_t * > ( rng_state . data_ptr ( ) ) ;
2023-07-17 20:26:11 +08:00
if ( p_dropout > 0.0 ) {
auto gen = at : : get_generator_or_default < at : : CUDAGeneratorImpl > (
gen_ , at : : cuda : : detail : : getDefaultCUDAGenerator ( ) ) ;
// See Note [Acquire lock when using random generators]
std : : lock_guard < std : : mutex > lock ( gen - > mutex_ ) ;
params . philox_args = gen - > philox_cuda_state ( counter_offset ) ;
}
2024-01-30 12:44:23 +08:00
set_params_alibi ( params , alibi_slopes_ , batch_size , num_heads ) ;
2023-12-20 14:56:06 +08:00
2023-11-20 14:20:01 +08:00
if ( seqlen_k > 0 ) {
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
run_mha_fwd ( params , stream ) ;
} else {
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
out . zero_ ( ) ;
softmax_lse . fill_ ( std : : numeric_limits < float > : : infinity ( ) ) ;
}
2023-07-17 20:26:11 +08:00
at : : Tensor out_padded = out ;
if ( head_size_og % 8 ! = 0 ) {
out = out . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
if ( out_ . has_value ( ) ) { out_ . value ( ) . copy_ ( out ) ; }
}
2023-09-21 14:38:22 +08:00
if ( seqlenq_ngroups_swapped ) {
out = out . transpose ( 1 , 2 ) . reshape ( { batch_size , 1 , num_heads_k * seqlen_q , head_size_og } ) ;
out_padded = out_padded . transpose ( 1 , 2 ) . reshape ( { batch_size , 1 , num_heads_k * seqlen_q , head_size_og } ) ;
q_padded = q_padded . transpose ( 1 , 2 ) . reshape ( { batch_size , 1 , num_heads_k * seqlen_q , head_size_og } ) ;
softmax_lse = softmax_lse . reshape ( { batch_size , num_heads_k * seqlen_q , 1 } ) ;
2023-09-19 05:52:16 +08:00
}
2023-07-28 07:11:34 +08:00
return { out , q_padded , k_padded , v_padded , out_padded , softmax_lse , p , rng_state } ;
2023-07-17 20:26:11 +08:00
}
std : : vector < at : : Tensor >
2024-01-22 07:28:36 +08:00
mha_varlen_fwd ( at : : Tensor & q , // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
2024-03-15 15:48:19 +08:00
const at : : Tensor & k , // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
const at : : Tensor & v , // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
2023-07-17 20:26:11 +08:00
c10 : : optional < at : : Tensor > & out_ , // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
const at : : Tensor & cu_seqlens_q , // b+1
const at : : Tensor & cu_seqlens_k , // b+1
2023-11-27 16:41:23 +08:00
c10 : : optional < at : : Tensor > & seqused_k , // b. If given, only this many elements of each batch element's keys are used.
2024-03-15 15:48:19 +08:00
c10 : : optional < at : : Tensor > & block_table_ , // batch_size x max_num_blocks_per_seq
2023-12-22 14:27:40 +08:00
c10 : : optional < at : : Tensor > & alibi_slopes_ , // num_heads or b x num_heads
2024-01-22 07:28:36 +08:00
int max_seqlen_q ,
2023-07-17 20:26:11 +08:00
const int max_seqlen_k ,
const float p_dropout ,
const float softmax_scale ,
const bool zero_tensors ,
2024-01-22 07:28:36 +08:00
bool is_causal ,
2023-12-24 12:59:26 +08:00
int window_size_left ,
2023-09-25 13:48:39 +08:00
int window_size_right ,
2023-07-17 20:26:11 +08:00
const bool return_softmax ,
c10 : : optional < at : : Generator > gen_ ) {
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
bool is_sm8x = dprops - > major = = 8 & & dprops - > minor > = 0 ;
bool is_sm90 = dprops - > major = = 9 & & dprops - > minor = = 0 ;
TORCH_CHECK ( is_sm90 | | is_sm8x , " FlashAttention only supports Ampere GPUs or newer. " ) ;
// We will support Turing in the near future
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
auto q_dtype = q . dtype ( ) ;
TORCH_CHECK ( q_dtype = = torch : : kFloat16 | | q_dtype = = torch : : kBFloat16 ,
" FlashAttention only support fp16 and bf16 data type " ) ;
if ( q_dtype = = torch : : kBFloat16 ) {
TORCH_CHECK ( is_sm90 | | is_sm8x , " bfloat16 is only supported on Ampere GPUs or newer " ) ;
}
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
TORCH_CHECK ( cu_seqlens_q . dtype ( ) = = torch : : kInt32 , " cu_seqlens_q must have dtype int32 " ) ;
TORCH_CHECK ( cu_seqlens_k . dtype ( ) = = torch : : kInt32 , " cu_seqlens_k must have dtype int32 " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
CHECK_DEVICE ( cu_seqlens_q ) ;
CHECK_DEVICE ( cu_seqlens_k ) ;
2023-07-17 20:26:11 +08:00
2024-03-15 15:48:19 +08:00
at : : Tensor block_table ;
const bool paged_KV = block_table_ . has_value ( ) ;
if ( paged_KV ) {
block_table = block_table_ . value ( ) ;
CHECK_DEVICE ( block_table ) ;
TORCH_CHECK ( block_table . dtype ( ) = = torch : : kInt32 , " block_table must have dtype torch.int32 " ) ;
TORCH_CHECK ( block_table . stride ( - 1 ) = = 1 , " block_table must have contiguous last dimension " ) ;
}
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
2023-09-16 16:20:16 +08:00
CHECK_CONTIGUOUS ( cu_seqlens_q ) ;
CHECK_CONTIGUOUS ( cu_seqlens_k ) ;
2023-07-17 20:26:11 +08:00
const auto sizes = q . sizes ( ) ;
const int batch_size = cu_seqlens_q . numel ( ) - 1 ;
2024-01-22 07:28:36 +08:00
int num_heads = sizes [ 1 ] ;
2023-07-17 20:26:11 +08:00
const int head_size_og = sizes [ 2 ] ;
2024-03-15 15:48:19 +08:00
const int num_heads_k = paged_KV ? k . size ( 2 ) : k . size ( 1 ) ;
const int max_num_blocks_per_seq = ! paged_KV ? 0 : block_table . size ( 1 ) ;
const int num_blocks = ! paged_KV ? 0 : k . size ( 0 ) ;
const int page_block_size = ! paged_KV ? 1 : k . size ( 1 ) ;
TORCH_CHECK ( ! paged_KV | | page_block_size % 256 = = 0 , " Paged KV cache block size must be divisible by 256 " ) ;
2024-01-22 07:28:36 +08:00
if ( max_seqlen_q = = 1 & & ! alibi_slopes_ . has_value ( ) ) { is_causal = false ; } // causal=true is the same as causal=false in this case
if ( is_causal ) { window_size_right = 0 ; }
void * cu_seqlens_q_d = cu_seqlens_q . data_ptr ( ) ;
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
// H/t Daniel Haziza
const int seqlenq_ngroups_swapped = max_seqlen_q = = 1 & & num_heads > num_heads_k & & window_size_left < 0 & & window_size_right < 0 & & p_dropout = = 0.f & & head_size_og % 8 = = 0 & & ! alibi_slopes_ . has_value ( ) ;
2024-04-08 11:04:39 +08:00
const int ngroups = num_heads / num_heads_k ;
2024-01-22 07:28:36 +08:00
if ( seqlenq_ngroups_swapped ) {
q = q . reshape ( { batch_size , num_heads_k , ngroups , head_size_og } ) . transpose ( 1 , 2 ) . reshape ( { batch_size * ngroups , num_heads_k , head_size_og } ) ;
max_seqlen_q = ngroups ;
num_heads = num_heads_k ;
cu_seqlens_q_d = nullptr ;
}
const int total_q = q . sizes ( ) [ 0 ] ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( batch_size > 0 , " batch size must be positive " ) ;
TORCH_CHECK ( head_size_og < = 256 , " FlashAttention forward only supports head dimension at most 256 " ) ;
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
2023-12-24 12:59:26 +08:00
if ( window_size_left > = max_seqlen_k ) { window_size_left = - 1 ; }
if ( window_size_right > = max_seqlen_k ) { window_size_right = - 1 ; }
2023-07-17 20:26:11 +08:00
CHECK_SHAPE ( q , total_q , num_heads , head_size_og ) ;
2024-03-15 15:48:19 +08:00
if ( ! paged_KV ) {
const int total_k = k . size ( 0 ) ;
CHECK_SHAPE ( k , total_k , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( v , total_k , num_heads_k , head_size_og ) ;
} else {
CHECK_SHAPE ( k , num_blocks , page_block_size , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( v , num_blocks , page_block_size , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( block_table , batch_size , max_num_blocks_per_seq ) ;
}
2023-07-17 20:26:11 +08:00
CHECK_SHAPE ( cu_seqlens_q , batch_size + 1 ) ;
CHECK_SHAPE ( cu_seqlens_k , batch_size + 1 ) ;
2023-11-27 16:41:23 +08:00
if ( seqused_k . has_value ( ) ) {
auto seqused_k_ = seqused_k . value ( ) ;
TORCH_CHECK ( seqused_k_ . dtype ( ) = = torch : : kInt32 , " seqused_k must have dtype int32 " ) ;
TORCH_CHECK ( seqused_k_ . is_cuda ( ) , " seqused_k must be on CUDA device " ) ;
TORCH_CHECK ( seqused_k_ . is_contiguous ( ) , " seqused_k must be contiguous " ) ;
CHECK_SHAPE ( seqused_k_ , batch_size ) ;
}
2023-07-17 20:26:11 +08:00
at : : Tensor q_padded , k_padded , v_padded ;
if ( head_size_og % 8 ! = 0 ) {
q_padded = torch : : nn : : functional : : pad ( q , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
k_padded = torch : : nn : : functional : : pad ( k , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
v_padded = torch : : nn : : functional : : pad ( v , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
q_padded = q ;
k_padded = k ;
v_padded = v ;
}
at : : Tensor out ;
if ( out_ . has_value ( ) ) {
out = out_ . value ( ) ;
TORCH_CHECK ( out . dtype ( ) = = q_dtype , " Output must have the same dtype as inputs " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( out ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " Output tensor must have contiguous last dimension " ) ;
2024-04-08 11:04:39 +08:00
CHECK_SHAPE ( out , sizes [ 0 ] , sizes [ 1 ] , head_size_og ) ;
if ( seqlenq_ngroups_swapped ) {
out = out . reshape ( { batch_size , num_heads_k , ngroups , head_size_og } ) . transpose ( 1 , 2 ) . reshape ( { batch_size * ngroups , num_heads_k , head_size_og } ) ;
}
2023-07-17 20:26:11 +08:00
if ( head_size_og % 8 ! = 0 ) { out = torch : : empty_like ( q_padded ) ; }
} else {
out = torch : : empty_like ( q_padded ) ;
}
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
const int head_size = round_multiple ( head_size_og , 8 ) ;
const int head_size_rounded = round_multiple ( head_size , 32 ) ;
const int seqlen_q_rounded = round_multiple ( max_seqlen_q , 128 ) ;
const int seqlen_k_rounded = round_multiple ( max_seqlen_k , 128 ) ;
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
2024-06-27 17:38:13 +08:00
auto softmax_lse = torch : : empty ( { num_heads , total_q } , opts . dtype ( at : : kFloat ) ) ;
2023-07-17 20:26:11 +08:00
at : : Tensor p ;
// Only return softmax if there's dropout to reduce compilation time
if ( return_softmax ) {
TORCH_CHECK ( p_dropout > 0.0f , " return_softmax is only supported when p_dropout > 0.0 " ) ;
p = torch : : empty ( { batch_size , num_heads , seqlen_q_rounded , seqlen_k_rounded } , opts ) ;
}
if ( zero_tensors ) {
out . zero_ ( ) ;
softmax_lse . fill_ ( - std : : numeric_limits < float > : : infinity ( ) ) ;
if ( return_softmax ) { p . zero_ ( ) ; }
}
Flash_fwd_params params ;
set_params_fprop ( params ,
batch_size ,
max_seqlen_q , max_seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q_padded , k_padded , v_padded , out ,
2024-01-22 07:28:36 +08:00
cu_seqlens_q_d ,
2023-07-17 20:26:11 +08:00
cu_seqlens_k . data_ptr ( ) ,
2023-11-27 16:41:23 +08:00
seqused_k . has_value ( ) ? seqused_k . value ( ) . data_ptr ( ) : nullptr ,
2023-07-17 20:26:11 +08:00
return_softmax ? p . data_ptr ( ) : nullptr ,
softmax_lse . data_ptr ( ) ,
p_dropout ,
softmax_scale ,
2023-09-25 13:48:39 +08:00
window_size_left ,
2024-01-22 07:28:36 +08:00
window_size_right ,
2024-06-27 17:38:13 +08:00
seqlenq_ngroups_swapped ,
/*unpadded_lse*/ true ) ;
params . total_q = total_q ;
2024-03-15 15:48:19 +08:00
if ( paged_KV ) {
params . block_table = block_table . data_ptr < int > ( ) ;
params . block_table_batch_stride = block_table . stride ( 0 ) ;
params . k_batch_stride = k_padded . stride ( 0 ) ;
params . v_batch_stride = v_padded . stride ( 0 ) ;
}
params . page_block_size = page_block_size ;
2024-01-22 07:28:36 +08:00
if ( seqlenq_ngroups_swapped ) {
// Only apply split-k for decoding
set_params_splitkv ( params , batch_size , num_heads ,
2024-01-23 14:47:30 +08:00
head_size , max_seqlen_k , max_seqlen_q ,
head_size_rounded , p_dropout , /*num_splits*/ 0 , dprops , opts ) ;
2024-01-22 07:28:36 +08:00
}
2023-07-17 20:26:11 +08:00
2023-07-28 07:11:34 +08:00
// number of times random will be generated per thread, to offset philox counter in thc random
// state
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
int64_t counter_offset = params . b * params . h * 32 ;
auto options = torch : : TensorOptions ( ) . dtype ( torch : : kFloat32 ) . device ( torch : : kCUDA ) ;
auto rng_state = torch : : empty ( { 2 } , options . dtype ( torch : : kInt64 ) ) ;
// Forward kernel will populate memory with the seed and offset.
params . rng_state = reinterpret_cast < uint64_t * > ( rng_state . data_ptr ( ) ) ;
2023-07-17 20:26:11 +08:00
if ( p_dropout > 0.0 ) {
auto gen = at : : get_generator_or_default < at : : CUDAGeneratorImpl > (
gen_ , at : : cuda : : detail : : getDefaultCUDAGenerator ( ) ) ;
// See Note [Acquire lock when using random generators]
std : : lock_guard < std : : mutex > lock ( gen - > mutex_ ) ;
params . philox_args = gen - > philox_cuda_state ( counter_offset ) ;
}
2024-01-30 12:44:23 +08:00
set_params_alibi ( params , alibi_slopes_ , batch_size , num_heads ) ;
2023-12-20 14:56:06 +08:00
2023-12-24 09:46:06 +08:00
if ( max_seqlen_k > 0 ) {
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
2024-03-15 15:48:19 +08:00
run_mha_fwd ( params , stream , paged_KV ) ;
2023-12-24 09:46:06 +08:00
} else {
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
out . zero_ ( ) ;
softmax_lse . fill_ ( std : : numeric_limits < float > : : infinity ( ) ) ;
}
2023-07-17 20:26:11 +08:00
at : : Tensor out_padded = out ;
if ( head_size_og % 8 ! = 0 ) {
out = out . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
if ( out_ . has_value ( ) ) { out_ . value ( ) . copy_ ( out ) ; }
}
2024-01-22 07:28:36 +08:00
if ( seqlenq_ngroups_swapped ) {
2024-02-08 09:41:53 +08:00
int64_t size_before [ ] = { batch_size , max_seqlen_q , num_heads_k , head_size_og } ;
int64_t size_after [ ] = { batch_size , num_heads_k * max_seqlen_q , head_size_og } ;
2024-01-22 07:28:36 +08:00
out = out . reshape ( size_before ) . transpose ( 1 , 2 ) . reshape ( size_after ) ;
out_padded = out_padded . reshape ( size_before ) . transpose ( 1 , 2 ) . reshape ( size_after ) ;
q_padded = q_padded . reshape ( size_before ) . transpose ( 1 , 2 ) . reshape ( size_after ) ;
2024-06-27 17:38:13 +08:00
softmax_lse = softmax_lse . reshape ( { num_heads * max_seqlen_q , batch_size } ) ;
2024-01-22 07:28:36 +08:00
}
2023-07-28 07:11:34 +08:00
return { out , q_padded , k_padded , v_padded , out_padded , softmax_lse , p , rng_state } ;
2023-07-17 20:26:11 +08:00
}
2024-01-22 06:42:55 +08:00
void run_mha_bwd ( Flash_bwd_params & params , cudaStream_t stream ) {
2023-07-17 20:26:11 +08:00
FP16_SWITCH ( ! params . is_bf16 , [ & ] {
2024-01-22 06:42:55 +08:00
HEADDIM_SWITCH ( params . d , [ & ] {
run_mha_bwd_ < elem_type , kHeadDim > ( params , stream ) ;
} ) ;
2023-07-17 20:26:11 +08:00
} ) ;
}
std : : vector < at : : Tensor >
mha_bwd ( const at : : Tensor & dout , // batch_size x seqlen_q x num_heads, x head_size_og
const at : : Tensor & q , // batch_size x seqlen_q x num_heads x head_size
const at : : Tensor & k , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & v , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & out , // batch_size x seqlen_q x num_heads x head_size
const at : : Tensor & softmax_lse , // b x h x seqlen_q
c10 : : optional < at : : Tensor > & dq_ , // batch_size x seqlen_q x num_heads x head_size
c10 : : optional < at : : Tensor > & dk_ , // batch_size x seqlen_k x num_heads_k x head_size
c10 : : optional < at : : Tensor > & dv_ , // batch_size x seqlen_k x num_heads_k x head_size
2023-12-22 14:27:40 +08:00
c10 : : optional < at : : Tensor > & alibi_slopes_ , // num_heads or batch_size x num_heads
2023-07-17 20:26:11 +08:00
const float p_dropout , // probability to drop
const float softmax_scale ,
const bool is_causal ,
2023-12-24 12:59:26 +08:00
int window_size_left ,
2023-09-25 13:48:39 +08:00
int window_size_right ,
2023-12-24 09:46:06 +08:00
const bool deterministic ,
2023-07-28 07:11:34 +08:00
c10 : : optional < at : : Generator > gen_ ,
c10 : : optional < at : : Tensor > & rng_state ) {
2023-09-25 13:48:39 +08:00
2024-01-30 12:44:23 +08:00
# ifdef FLASHATTENTION_DISABLE_BACKWARD
TORCH_CHECK ( false , " This flash attention build does not support backward. " ) ;
# endif
2023-09-25 13:48:39 +08:00
if ( is_causal ) { window_size_right = 0 ; }
2023-07-17 20:26:11 +08:00
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
bool is_sm8x = dprops - > major = = 8 & & dprops - > minor > = 0 ;
bool is_sm80 = dprops - > major = = 8 & & dprops - > minor = = 0 ;
bool is_sm90 = dprops - > major = = 9 & & dprops - > minor = = 0 ;
TORCH_CHECK ( is_sm90 | | is_sm8x , " FlashAttention only supports Ampere GPUs or newer. " ) ;
// We will support Turing in the near future
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
bool is_dropout = p_dropout > 0.0 ;
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
auto q_dtype = q . dtype ( ) ;
TORCH_CHECK ( q_dtype = = torch : : kFloat16 | | q_dtype = = torch : : kBFloat16 ,
" FlashAttention only support fp16 and bf16 data type " ) ;
if ( q_dtype = = torch : : kBFloat16 ) {
TORCH_CHECK ( is_sm90 | | is_sm8x , " bfloat16 is only supported on Ampere GPUs or newer " ) ;
}
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
TORCH_CHECK ( out . dtype ( ) = = q_dtype , " query and out must have the same dtype " ) ;
TORCH_CHECK ( dout . dtype ( ) = = q_dtype , " query and dout must have the same dtype " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
CHECK_DEVICE ( out ) ; CHECK_DEVICE ( dout ) ; CHECK_DEVICE ( softmax_lse ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " out tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( dout . stride ( - 1 ) = = 1 , " dout tensor must have contiguous last dimension " ) ;
const auto sizes = q . sizes ( ) ;
const int batch_size = sizes [ 0 ] ;
const int seqlen_q = sizes [ 1 ] ;
const int num_heads = sizes [ 2 ] ;
const int head_size_og = dout . size ( 3 ) ;
const int head_size = sizes [ 3 ] ;
const int seqlen_k = k . size ( 1 ) ;
const int num_heads_k = k . size ( 2 ) ;
TORCH_CHECK ( batch_size > 0 , " batch size must be positive " ) ;
TORCH_CHECK ( head_size % 8 = = 0 , " head_size should be a multiple of 8 " ) ;
TORCH_CHECK ( head_size < = 256 , " FlashAttention backward only supports head dimension at most 256 " ) ;
2024-02-22 07:56:19 +08:00
if ( head_size > 192 & & ( head_size < = 224 | | is_dropout ) ) {
TORCH_CHECK ( is_sm80 | | is_sm90 , " FlashAttention backward for head dim 256 with dropout, or head dim 224 with/without dropout requires A100/A800 or H100/H800 " ) ;
2023-07-17 20:26:11 +08:00
}
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
const int head_size_rounded = round_multiple ( head_size , 32 ) ;
const int seqlen_q_rounded = round_multiple ( seqlen_q , 128 ) ;
const int seqlen_k_rounded = round_multiple ( seqlen_k , 128 ) ;
TORCH_CHECK ( head_size = = round_multiple ( head_size_og , 8 ) , " head_size must be head_size_og rounded to a multiple of 8 " ) ;
2023-12-24 12:59:26 +08:00
if ( window_size_left > = seqlen_k ) { window_size_left = - 1 ; }
if ( window_size_right > = seqlen_k ) { window_size_right = - 1 ; }
2023-07-17 20:26:11 +08:00
CHECK_SHAPE ( q , batch_size , seqlen_q , num_heads , head_size ) ;
CHECK_SHAPE ( k , batch_size , seqlen_k , num_heads_k , head_size ) ;
CHECK_SHAPE ( v , batch_size , seqlen_k , num_heads_k , head_size ) ;
CHECK_SHAPE ( out , batch_size , seqlen_q , num_heads , head_size ) ;
CHECK_SHAPE ( dout , batch_size , seqlen_q , num_heads , head_size_og ) ;
at : : Tensor dq , dk , dv ;
if ( dq_ . has_value ( ) ) {
dq = dq_ . value ( ) ;
TORCH_CHECK ( dq . dtype ( ) = = q_dtype , " dq must have the same dtype as q " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( dq ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( dq . stride ( - 1 ) = = 1 , " dq must have contiguous last dimension " ) ;
CHECK_SHAPE ( dq , batch_size , seqlen_q , num_heads , head_size ) ;
} else {
dq = torch : : empty_like ( q ) ;
}
if ( dk_ . has_value ( ) ) {
dk = dk_ . value ( ) ;
TORCH_CHECK ( dk . dtype ( ) = = q_dtype , " dk must have the same dtype as q " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( dk ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( dk . stride ( - 1 ) = = 1 , " dk must have contiguous last dimension " ) ;
CHECK_SHAPE ( dk , batch_size , seqlen_k , num_heads_k , head_size ) ;
} else {
dk = torch : : empty_like ( k ) ;
}
if ( dv_ . has_value ( ) ) {
dv = dv_ . value ( ) ;
TORCH_CHECK ( dv . dtype ( ) = = q_dtype , " dv must have the same dtype as q " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( dv ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( dv . stride ( - 1 ) = = 1 , " dv must have contiguous last dimension " ) ;
CHECK_SHAPE ( dv , batch_size , seqlen_k , num_heads_k , head_size ) ;
} else {
2024-02-10 17:01:27 +08:00
dv = torch : : empty_like ( v ) ;
2023-07-17 20:26:11 +08:00
}
at : : Tensor dout_padded ;
if ( head_size_og % 8 ! = 0 ) {
dout_padded = torch : : nn : : functional : : pad ( dout , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
dout_padded = dout ;
}
// bool loop = seqlen_k > blocksize_c;
// TODO: change later, for now set to true for simplicity
bool loop = true ;
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
auto softmax_d = torch : : empty ( { batch_size , num_heads , seqlen_q_rounded } , opts . dtype ( at : : kFloat ) ) ;
at : : Tensor dq_accum ;
at : : Tensor dk_accum , dv_accum ;
if ( loop ) {
2023-12-24 09:46:06 +08:00
if ( ! deterministic ) {
dq_accum = torch : : empty ( { batch_size , seqlen_q_rounded , num_heads , head_size_rounded } , opts . dtype ( at : : kFloat ) ) ;
} else {
const int nsplits = ( dprops - > multiProcessorCount + batch_size * num_heads - 1 ) / ( batch_size * num_heads ) ;
dq_accum = torch : : zeros ( { nsplits , batch_size , seqlen_q_rounded , num_heads , head_size_rounded } , opts . dtype ( at : : kFloat ) ) ;
}
2023-07-17 20:26:11 +08:00
// dk_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
// dv_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
}
at : : Tensor dk_expanded , dv_expanded ;
if ( num_heads_k ! = num_heads ) { // MQA / GQA
dk_expanded = torch : : empty ( { batch_size , seqlen_k , num_heads , head_size } , opts ) ;
dv_expanded = torch : : empty ( { batch_size , seqlen_k , num_heads , head_size } , opts ) ;
} else {
dk_expanded = dk ;
dv_expanded = dv ;
}
Flash_bwd_params params ;
set_params_dgrad ( params ,
batch_size ,
seqlen_q , seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q , k , v , out ,
dout_padded , dq , dk_expanded , dv_expanded ,
nullptr ,
nullptr ,
loop ? dq_accum . data_ptr ( ) : nullptr ,
// loop ? dk_accum.data_ptr() : nullptr,
// loop ? dv_accum.data_ptr() : nullptr,
nullptr ,
nullptr ,
softmax_lse . data_ptr ( ) ,
softmax_d . data_ptr ( ) ,
p_dropout ,
softmax_scale ,
2023-09-25 13:48:39 +08:00
window_size_left ,
2023-12-24 09:46:06 +08:00
window_size_right ,
2024-06-27 17:38:13 +08:00
deterministic ,
/*unpadded_lse*/ false ) ;
2023-12-24 09:46:06 +08:00
params . dq_accum_split_stride = ! deterministic ? 0 : dq_accum . stride ( 0 ) ;
2023-07-17 20:26:11 +08:00
auto launch = & run_mha_bwd ;
auto gen = at : : get_generator_or_default < at : : CUDAGeneratorImpl > (
gen_ , at : : cuda : : detail : : getDefaultCUDAGenerator ( ) ) ;
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
int64_t counter_offset = params . b * params . h * 32 ;
2023-07-28 07:11:34 +08:00
if ( rng_state . has_value ( ) ) {
params . rng_state = reinterpret_cast < uint64_t * > ( rng_state . value ( ) . data_ptr ( ) ) ;
} else if ( is_dropout ) {
2023-07-17 20:26:11 +08:00
// See Note [Acquire lock when using random generators]
std : : lock_guard < std : : mutex > lock ( gen - > mutex_ ) ;
params . philox_args = gen - > philox_cuda_state ( counter_offset ) ;
2023-07-28 07:11:34 +08:00
auto seeds = at : : cuda : : philox : : unpack ( params . philox_args ) ;
params . rng_state [ 0 ] = std : : get < 0 > ( seeds ) ;
params . rng_state [ 1 ] = std : : get < 1 > ( seeds ) ;
2023-07-17 20:26:11 +08:00
}
2024-01-30 12:44:23 +08:00
set_params_alibi ( params , alibi_slopes_ , batch_size , num_heads ) ;
2023-12-20 14:56:06 +08:00
2023-11-20 14:20:01 +08:00
if ( seqlen_q > 0 ) {
2024-01-22 06:42:55 +08:00
launch ( params , stream ) ;
2023-11-20 14:20:01 +08:00
} else {
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
2023-12-24 09:46:06 +08:00
dk_expanded . zero_ ( ) ;
dv_expanded . zero_ ( ) ;
2023-11-20 14:20:01 +08:00
softmax_d . zero_ ( ) ;
}
2023-07-17 20:26:11 +08:00
// For MQA/GQA we need to sum dK and dV across the groups
if ( num_heads_k ! = num_heads ) {
at : : sum_out ( dk , at : : reshape ( dk_expanded , { batch_size , seqlen_k , num_heads_k , num_heads / num_heads_k , head_size } ) , { 3 } ) ;
at : : sum_out ( dv , at : : reshape ( dv_expanded , { batch_size , seqlen_k , num_heads_k , num_heads / num_heads_k , head_size } ) , { 3 } ) ;
}
if ( head_size_og % 8 ! = 0 ) {
dq = dq . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
dk = dk . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
dv = dv . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
}
return { dq , dk , dv , softmax_d } ;
}
std : : vector < at : : Tensor >
mha_varlen_bwd ( const at : : Tensor & dout , // total_q x num_heads, x head_size
const at : : Tensor & q , // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
const at : : Tensor & k , // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
const at : : Tensor & v , // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
const at : : Tensor & out , // total_q x num_heads x head_size
2024-06-27 17:38:13 +08:00
const at : : Tensor & softmax_lse , // h x total_q, softmax logsumexp
2023-07-17 20:26:11 +08:00
c10 : : optional < at : : Tensor > & dq_ , // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
c10 : : optional < at : : Tensor > & dk_ , // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
c10 : : optional < at : : Tensor > & dv_ , // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
const at : : Tensor & cu_seqlens_q , // b+1
const at : : Tensor & cu_seqlens_k , // b+1
2023-12-22 14:27:40 +08:00
c10 : : optional < at : : Tensor > & alibi_slopes_ , // num_heads or b x num_heads
2023-07-17 20:26:11 +08:00
const int max_seqlen_q ,
const int max_seqlen_k , // max sequence length to choose the kernel
const float p_dropout , // probability to drop
const float softmax_scale ,
const bool zero_tensors ,
const bool is_causal ,
2023-12-24 12:59:26 +08:00
int window_size_left ,
2023-09-25 13:48:39 +08:00
int window_size_right ,
2023-12-24 09:46:06 +08:00
const bool deterministic ,
2023-07-28 07:11:34 +08:00
c10 : : optional < at : : Generator > gen_ ,
2023-09-25 13:48:39 +08:00
c10 : : optional < at : : Tensor > & rng_state ) {
2024-01-30 12:44:23 +08:00
# ifdef FLASHATTENTION_DISABLE_BACKWARD
TORCH_CHECK ( false , " This flash attention build does not support backward. " ) ;
# endif
2023-09-25 13:48:39 +08:00
if ( is_causal ) { window_size_right = 0 ; }
2023-07-17 20:26:11 +08:00
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
bool is_sm8x = dprops - > major = = 8 & & dprops - > minor > = 0 ;
bool is_sm80 = dprops - > major = = 8 & & dprops - > minor = = 0 ;
bool is_sm90 = dprops - > major = = 9 & & dprops - > minor = = 0 ;
TORCH_CHECK ( is_sm90 | | is_sm8x , " FlashAttention only supports Ampere GPUs or newer. " ) ;
// We will support Turing in the near future
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
bool is_dropout = p_dropout > 0.0 ;
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
auto q_dtype = q . dtype ( ) ;
TORCH_CHECK ( q_dtype = = torch : : kFloat16 | | q_dtype = = torch : : kBFloat16 ,
" FlashAttention only support fp16 and bf16 data type " ) ;
if ( q_dtype = = torch : : kBFloat16 ) {
TORCH_CHECK ( is_sm90 | | is_sm8x , " bfloat16 is only supported on Ampere GPUs or newer " ) ;
}
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
TORCH_CHECK ( out . dtype ( ) = = q_dtype , " query and out must have the same dtype " ) ;
TORCH_CHECK ( dout . dtype ( ) = = q_dtype , " query and dout must have the same dtype " ) ;
TORCH_CHECK ( cu_seqlens_q . dtype ( ) = = torch : : kInt32 , " cu_seqlens_q must have dtype int32 " ) ;
TORCH_CHECK ( cu_seqlens_k . dtype ( ) = = torch : : kInt32 , " cu_seqlens_k must have dtype int32 " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
CHECK_DEVICE ( out ) ; CHECK_DEVICE ( dout ) ; CHECK_DEVICE ( softmax_lse ) ;
CHECK_DEVICE ( cu_seqlens_q ) ; CHECK_DEVICE ( cu_seqlens_k ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " out tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( dout . stride ( - 1 ) = = 1 , " dout tensor must have contiguous last dimension " ) ;
2023-09-16 16:20:16 +08:00
CHECK_CONTIGUOUS ( cu_seqlens_q ) ;
CHECK_CONTIGUOUS ( cu_seqlens_k ) ;
2023-07-17 20:26:11 +08:00
const auto sizes = q . sizes ( ) ;
const int total_q = sizes [ 0 ] ;
const int batch_size = cu_seqlens_q . numel ( ) - 1 ;
const int num_heads = sizes [ 1 ] ;
const int head_size_og = dout . size ( 2 ) ;
const int head_size = sizes [ 2 ] ;
const int total_k = k . size ( 0 ) ;
const int num_heads_k = k . size ( 1 ) ;
TORCH_CHECK ( batch_size > 0 , " batch size must be positive " ) ;
TORCH_CHECK ( head_size % 8 = = 0 , " head_size should be a multiple of 8 " ) ;
TORCH_CHECK ( head_size < = 256 , " FlashAttention backward only supports head dimension at most 256 " ) ;
2024-02-22 07:56:19 +08:00
if ( head_size > 192 & & ( head_size < = 224 | | is_dropout ) ) {
TORCH_CHECK ( is_sm80 | | is_sm90 , " FlashAttention backward for head dim 256 with dropout, or head dim 224 with/without dropout requires A100/A800 or H100/H800 " ) ;
2023-07-17 20:26:11 +08:00
}
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
const int head_size_rounded = round_multiple ( head_size , 32 ) ;
const int seqlen_q_rounded = round_multiple ( max_seqlen_q , 128 ) ;
const int seqlen_k_rounded = round_multiple ( max_seqlen_k , 128 ) ;
TORCH_CHECK ( head_size = = round_multiple ( head_size_og , 8 ) , " head_size must be head_size_og rounded to a multiple of 8 " ) ;
2023-12-24 12:59:26 +08:00
if ( window_size_left > = max_seqlen_k ) { window_size_left = - 1 ; }
if ( window_size_right > = max_seqlen_k ) { window_size_right = - 1 ; }
2023-07-17 20:26:11 +08:00
CHECK_SHAPE ( q , total_q , num_heads , head_size ) ;
CHECK_SHAPE ( k , total_k , num_heads_k , head_size ) ;
CHECK_SHAPE ( v , total_k , num_heads_k , head_size ) ;
CHECK_SHAPE ( out , total_q , num_heads , head_size ) ;
CHECK_SHAPE ( dout , total_q , num_heads , head_size_og ) ;
CHECK_SHAPE ( cu_seqlens_q , batch_size + 1 ) ;
CHECK_SHAPE ( cu_seqlens_k , batch_size + 1 ) ;
at : : Tensor dq , dk , dv ;
if ( dq_ . has_value ( ) ) {
dq = dq_ . value ( ) ;
TORCH_CHECK ( dq . dtype ( ) = = q_dtype , " dq must have the same dtype as q " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( dq ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( dq . stride ( - 1 ) = = 1 , " dq must have contiguous last dimension " ) ;
CHECK_SHAPE ( dq , total_q , num_heads , head_size ) ;
} else {
dq = torch : : empty_like ( q ) ;
}
if ( dk_ . has_value ( ) ) {
dk = dk_ . value ( ) ;
TORCH_CHECK ( dk . dtype ( ) = = q_dtype , " dk must have the same dtype as q " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( dk ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( dk . stride ( - 1 ) = = 1 , " dk must have contiguous last dimension " ) ;
CHECK_SHAPE ( dk , total_k , num_heads_k , head_size ) ;
} else {
dk = torch : : empty_like ( k ) ;
}
if ( dv_ . has_value ( ) ) {
dv = dv_ . value ( ) ;
TORCH_CHECK ( dv . dtype ( ) = = q_dtype , " dv must have the same dtype as q " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( dv ) ;
2023-07-17 20:26:11 +08:00
TORCH_CHECK ( dv . stride ( - 1 ) = = 1 , " dv must have contiguous last dimension " ) ;
CHECK_SHAPE ( dv , total_k , num_heads_k , head_size ) ;
} else {
2024-02-10 17:03:00 +08:00
dv = torch : : empty_like ( v ) ;
2023-07-17 20:26:11 +08:00
}
at : : Tensor dout_padded ;
if ( head_size_og % 8 ! = 0 ) {
dout_padded = torch : : nn : : functional : : pad ( dout , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
dout_padded = dout ;
}
// bool loop = max_seqlen_k > blocksize_c;
// TODO: change later, for now set to true for simplicity
bool loop = true ;
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
2024-06-27 17:38:13 +08:00
auto softmax_d = torch : : empty ( { num_heads , total_q + 128 * batch_size } , opts . dtype ( at : : kFloat ) ) ;
2023-07-17 20:26:11 +08:00
at : : Tensor dq_accum ;
if ( loop ) {
2023-09-24 15:36:07 +08:00
// We don't want to allocate dq_accum of size (batch, seqlen_q_rounded, num_heads, head_size_rounded)
// because that would be too large if there is a very long sequence and the rest of the sequences are short.
// Instead, we allocate dq_accum of size (total_q + 128 * batch, num_heads, head_size_rounded).
// Note that 128 is the max block size on the seqlen_q dimension.
// For dQ, the i-th sequence is stored in indices from cu_seqlens[i] + 128 * i to
// cu_seqlens[i + 1] * 128 * i - 1. This ensures that the i-th sequence and (i + 1)-th sequence will
// be at least 128 apart. It's ok for us to do atomicAdds up to 128 rows beyond what we're normally
// allowed to do. So we won't have to do any bound checking, and performance should stay the same.
2024-06-27 17:38:13 +08:00
// Same holds for softmax_d, since LSE is stored in unpadded format.
2023-12-24 09:46:06 +08:00
if ( ! deterministic ) {
dq_accum = torch : : empty ( { total_q + 128 * batch_size , num_heads , head_size_rounded } , opts . dtype ( at : : kFloat ) ) ;
} else {
const int nsplits = ( dprops - > multiProcessorCount + batch_size * num_heads - 1 ) / ( batch_size * num_heads ) ;
dq_accum = torch : : zeros ( { nsplits , total_q + 128 * batch_size , num_heads , head_size_rounded } , opts . dtype ( at : : kFloat ) ) ;
}
2023-07-17 20:26:11 +08:00
}
at : : Tensor dk_expanded , dv_expanded ;
if ( num_heads_k ! = num_heads ) { // MQA / GQA
dk_expanded = torch : : empty ( { total_k , num_heads , head_size } , opts ) ;
dv_expanded = torch : : empty ( { total_k , num_heads , head_size } , opts ) ;
} else {
dk_expanded = dk ;
dv_expanded = dv ;
}
if ( zero_tensors ) {
dq . zero_ ( ) ;
dk_expanded . zero_ ( ) ;
dv_expanded . zero_ ( ) ;
softmax_d . zero_ ( ) ;
}
Flash_bwd_params params ;
set_params_dgrad ( params ,
batch_size ,
max_seqlen_q , max_seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q , k , v , out ,
dout_padded , dq , dk_expanded , dv_expanded ,
cu_seqlens_q . data_ptr ( ) ,
cu_seqlens_k . data_ptr ( ) ,
loop ? dq_accum . data_ptr ( ) : nullptr ,
nullptr ,
nullptr ,
softmax_lse . data_ptr ( ) ,
softmax_d . data_ptr ( ) ,
p_dropout ,
softmax_scale ,
2023-09-25 13:48:39 +08:00
window_size_left ,
2023-12-24 09:46:06 +08:00
window_size_right ,
2024-06-27 17:38:13 +08:00
deterministic ,
/*unpadded_lse*/ true ) ;
2023-12-24 09:46:06 +08:00
params . dq_accum_split_stride = ! deterministic ? 0 : dq_accum . stride ( 0 ) ;
2024-06-27 17:38:13 +08:00
params . total_q = total_q ;
2023-07-17 20:26:11 +08:00
auto launch = & run_mha_bwd ;
auto gen = at : : get_generator_or_default < at : : CUDAGeneratorImpl > (
gen_ , at : : cuda : : detail : : getDefaultCUDAGenerator ( ) ) ;
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
int64_t counter_offset = params . b * params . h * 32 ;
2023-07-28 07:11:34 +08:00
if ( rng_state . has_value ( ) ) {
params . rng_state = reinterpret_cast < uint64_t * > ( rng_state . value ( ) . data_ptr ( ) ) ;
} else if ( is_dropout ) {
2023-07-17 20:26:11 +08:00
// See Note [Acquire lock when using random generators]
std : : lock_guard < std : : mutex > lock ( gen - > mutex_ ) ;
params . philox_args = gen - > philox_cuda_state ( counter_offset ) ;
2023-07-28 07:11:34 +08:00
auto seeds = at : : cuda : : philox : : unpack ( params . philox_args ) ;
params . rng_state [ 0 ] = std : : get < 0 > ( seeds ) ;
params . rng_state [ 1 ] = std : : get < 1 > ( seeds ) ;
2023-07-17 20:26:11 +08:00
}
2024-01-30 12:44:23 +08:00
set_params_alibi ( params , alibi_slopes_ , batch_size , num_heads ) ;
2023-12-20 14:56:06 +08:00
2023-12-24 09:46:06 +08:00
if ( max_seqlen_q > 0 ) {
2024-01-22 06:42:55 +08:00
launch ( params , stream ) ;
2023-12-24 09:46:06 +08:00
} else {
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
dk_expanded . zero_ ( ) ;
dv_expanded . zero_ ( ) ;
softmax_d . zero_ ( ) ;
}
2023-07-17 20:26:11 +08:00
// For MQA/GQA we need to sum dK and dV across the groups
if ( num_heads_k ! = num_heads ) {
at : : sum_out ( dk , at : : reshape ( dk_expanded , { total_k , num_heads_k , num_heads / num_heads_k , head_size } ) , { 2 } ) ;
at : : sum_out ( dv , at : : reshape ( dv_expanded , { total_k , num_heads_k , num_heads / num_heads_k , head_size } ) , { 2 } ) ;
}
if ( head_size_og % 8 ! = 0 ) {
dq = dq . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
dk = dk . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
dv = dv . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
}
return { dq , dk , dv , softmax_d } ;
}
2023-09-04 15:00:59 +08:00
std : : vector < at : : Tensor >
2023-09-11 13:56:33 +08:00
mha_fwd_kvcache ( at : : Tensor & q , // batch_size x seqlen_q x num_heads x head_size
2024-01-23 14:47:30 +08:00
const at : : Tensor & kcache , // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
const at : : Tensor & vcache , // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
2023-09-11 13:56:33 +08:00
c10 : : optional < const at : : Tensor > & k_ , // batch_size x seqlen_knew x num_heads_k x head_size
c10 : : optional < const at : : Tensor > & v_ , // batch_size x seqlen_knew x num_heads_k x head_size
2023-09-04 15:00:59 +08:00
c10 : : optional < const at : : Tensor > & seqlens_k_ , // batch_size
2023-09-16 16:20:16 +08:00
c10 : : optional < const at : : Tensor > & rotary_cos_ , // seqlen_ro x (rotary_dim / 2)
c10 : : optional < const at : : Tensor > & rotary_sin_ , // seqlen_ro x (rotary_dim / 2)
2023-10-04 07:27:26 +08:00
c10 : : optional < const at : : Tensor > & cache_batch_idx_ , // indices to index into the KV cache
2024-01-23 14:47:30 +08:00
c10 : : optional < at : : Tensor > & block_table_ , // batch_size x max_num_blocks_per_seq
2023-12-22 14:27:40 +08:00
c10 : : optional < at : : Tensor > & alibi_slopes_ , // num_heads or batch_size x num_heads
2023-09-04 15:00:59 +08:00
c10 : : optional < at : : Tensor > & out_ , // batch_size x seqlen_q x num_heads x head_size
const float softmax_scale ,
2023-09-11 13:56:33 +08:00
bool is_causal ,
2023-12-24 12:59:26 +08:00
int window_size_left ,
2023-09-25 13:48:39 +08:00
int window_size_right ,
2023-09-16 16:20:16 +08:00
bool is_rotary_interleaved , // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
2023-12-22 14:27:40 +08:00
int num_splits
2023-09-04 15:00:59 +08:00
) {
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
bool is_sm8x = dprops - > major = = 8 & & dprops - > minor > = 0 ;
bool is_sm90 = dprops - > major = = 9 & & dprops - > minor = = 0 ;
TORCH_CHECK ( is_sm90 | | is_sm8x , " FlashAttention only supports Ampere GPUs or newer. " ) ;
// We will support Turing in the near future
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
auto q_dtype = q . dtype ( ) ;
TORCH_CHECK ( q_dtype = = torch : : kFloat16 | | q_dtype = = torch : : kBFloat16 ,
" FlashAttention only support fp16 and bf16 data type " ) ;
if ( q_dtype = = torch : : kBFloat16 ) {
TORCH_CHECK ( is_sm90 | | is_sm8x , " bfloat16 is only supported on Ampere GPUs or newer " ) ;
}
TORCH_CHECK ( kcache . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( vcache . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( kcache ) ; CHECK_DEVICE ( vcache ) ;
2023-09-04 15:00:59 +08:00
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( kcache . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( vcache . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
2024-01-23 14:47:30 +08:00
at : : Tensor block_table ;
const bool paged_KV = block_table_ . has_value ( ) ;
if ( paged_KV ) {
TORCH_CHECK ( ! cache_batch_idx_ . has_value ( ) , " Paged KVcache does not support cache_batch_idx " ) ;
block_table = block_table_ . value ( ) ;
CHECK_DEVICE ( block_table ) ;
TORCH_CHECK ( block_table . dtype ( ) = = torch : : kInt32 , " block_table must have dtype torch.int32 " ) ;
TORCH_CHECK ( block_table . stride ( - 1 ) = = 1 , " block_table must have contiguous last dimension " ) ;
}
2023-09-04 15:00:59 +08:00
const auto sizes = q . sizes ( ) ;
const int batch_size = sizes [ 0 ] ;
2023-09-11 13:56:33 +08:00
int seqlen_q = sizes [ 1 ] ;
int num_heads = sizes [ 2 ] ;
2023-09-04 15:00:59 +08:00
const int head_size_og = sizes [ 3 ] ;
2024-01-23 14:47:30 +08:00
const int max_num_blocks_per_seq = ! paged_KV ? 0 : block_table . size ( 1 ) ;
const int num_blocks = ! paged_KV ? 0 : kcache . size ( 0 ) ;
const int page_block_size = ! paged_KV ? 1 : kcache . size ( 1 ) ;
TORCH_CHECK ( ! paged_KV | | page_block_size % 256 = = 0 , " Paged KV cache block size must be divisible by 256 " ) ;
const int seqlen_k = ! paged_KV ? kcache . size ( 1 ) : max_num_blocks_per_seq * page_block_size ;
2023-09-04 15:00:59 +08:00
const int num_heads_k = kcache . size ( 2 ) ;
2024-01-23 14:47:30 +08:00
const int batch_size_c = ! paged_KV ? kcache . size ( 0 ) : batch_size ;
2023-09-04 15:00:59 +08:00
TORCH_CHECK ( batch_size > 0 , " batch size must be postive " ) ;
TORCH_CHECK ( head_size_og < = 256 , " FlashAttention forward only supports head dimension at most 256 " ) ;
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
2023-12-22 14:27:40 +08:00
// causal=true is the same as causal=false in this case
if ( seqlen_q = = 1 & & ! alibi_slopes_ . has_value ( ) ) { is_causal = false ; }
2023-09-25 13:48:39 +08:00
if ( is_causal ) { window_size_right = 0 ; }
2023-09-11 13:56:33 +08:00
2023-09-21 14:38:22 +08:00
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
// H/t Daniel Haziza
2023-12-22 14:27:40 +08:00
const int seqlenq_ngroups_swapped = seqlen_q = = 1 & & num_heads > num_heads_k & & window_size_left < 0 & & window_size_right < 0 & & head_size_og % 8 = = 0 & & ! alibi_slopes_ . has_value ( ) ;
2023-09-21 14:38:22 +08:00
if ( seqlenq_ngroups_swapped ) {
const int ngroups = num_heads / num_heads_k ;
q = q . reshape ( { batch_size , num_heads_k , ngroups , head_size_og } ) . transpose ( 1 , 2 ) ;
seqlen_q = ngroups ;
num_heads = num_heads_k ;
2023-09-11 13:56:33 +08:00
}
2023-12-24 12:59:26 +08:00
if ( window_size_left > = seqlen_k ) { window_size_left = - 1 ; }
if ( window_size_right > = seqlen_k ) { window_size_right = - 1 ; }
2023-09-04 15:00:59 +08:00
CHECK_SHAPE ( q , batch_size , seqlen_q , num_heads , head_size_og ) ;
2024-01-23 14:47:30 +08:00
if ( ! paged_KV ) {
CHECK_SHAPE ( kcache , batch_size_c , seqlen_k , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( vcache , batch_size_c , seqlen_k , num_heads_k , head_size_og ) ;
} else {
CHECK_SHAPE ( kcache , num_blocks , page_block_size , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( vcache , num_blocks , page_block_size , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( block_table , batch_size , max_num_blocks_per_seq ) ;
}
2023-09-04 15:00:59 +08:00
at : : Tensor q_padded , kcache_padded , vcache_padded ;
if ( head_size_og % 8 ! = 0 ) {
q_padded = torch : : nn : : functional : : pad ( q , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
kcache_padded = torch : : nn : : functional : : pad ( kcache , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
vcache_padded = torch : : nn : : functional : : pad ( vcache , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
q_padded = q ;
kcache_padded = kcache ;
vcache_padded = vcache ;
}
at : : Tensor out ;
if ( out_ . has_value ( ) ) {
out = out_ . value ( ) ;
TORCH_CHECK ( out . dtype ( ) = = q_dtype , " Output must have the same dtype as inputs " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( out ) ;
2023-09-04 15:00:59 +08:00
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " Output tensor must have contiguous last dimension " ) ;
CHECK_SHAPE ( out , batch_size , seqlen_q , num_heads , head_size_og ) ;
if ( head_size_og % 8 ! = 0 ) { out = torch : : empty_like ( q_padded ) ; }
} else {
out = torch : : empty_like ( q_padded ) ;
}
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
const int head_size = round_multiple ( head_size_og , 8 ) ;
const int head_size_rounded = round_multiple ( head_size , 32 ) ;
const int seqlen_q_rounded = round_multiple ( seqlen_q , 128 ) ;
const int seqlen_k_rounded = round_multiple ( seqlen_k , 128 ) ;
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
auto softmax_lse = torch : : empty ( { batch_size , num_heads , seqlen_q } , opts . dtype ( at : : kFloat ) ) ;
Flash_fwd_params params ;
set_params_fprop ( params ,
batch_size ,
seqlen_q , seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q_padded , kcache_padded , vcache_padded , out ,
/*cu_seqlens_q_d=*/ nullptr ,
/*cu_seqlens_k_d=*/ nullptr ,
2023-11-27 16:41:23 +08:00
/*seqused_k=*/ nullptr ,
2023-09-04 15:00:59 +08:00
/*p_ptr=*/ nullptr ,
softmax_lse . data_ptr ( ) ,
/*p_dropout=*/ 0.f ,
softmax_scale ,
2023-09-25 13:48:39 +08:00
window_size_left ,
window_size_right ) ;
2023-09-04 15:00:59 +08:00
at : : Tensor k , v , k_padded , v_padded ;
if ( k_ . has_value ( ) ) {
TORCH_CHECK ( v_ . has_value ( ) , " If key is supplied, value must also be passed in " ) ;
TORCH_CHECK ( seqlens_k_ . has_value ( ) , " If key is supplied, seqlens_k must also be passed in " ) ;
TORCH_CHECK ( seqlen_q < = seqlen_k , " If key is supplied, it must have seqlen <= the seqlen of the KV cache " ) ;
k = k_ . value ( ) ;
v = v_ . value ( ) ;
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " Key must have the same dtype as query " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " Value must have the same dtype as query " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
2023-09-04 15:00:59 +08:00
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Key tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Value tensor must have contiguous last dimension " ) ;
2023-09-11 13:56:33 +08:00
int seqlen_knew = k . size ( 1 ) ;
CHECK_SHAPE ( k , batch_size , seqlen_knew , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( v , batch_size , seqlen_knew , num_heads_k , head_size_og ) ;
2023-09-04 15:00:59 +08:00
if ( head_size_og % 8 ! = 0 ) {
k_padded = torch : : nn : : functional : : pad ( k , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
v_padded = torch : : nn : : functional : : pad ( v , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
k_padded = k ;
v_padded = v ;
}
2023-09-11 13:56:33 +08:00
params . seqlen_knew = seqlen_knew ;
2023-09-04 15:00:59 +08:00
params . knew_ptr = k_padded . data_ptr ( ) ;
params . vnew_ptr = v_padded . data_ptr ( ) ;
// All stride are in elements, not bytes.
params . knew_batch_stride = k_padded . stride ( 0 ) ;
params . vnew_batch_stride = v_padded . stride ( 0 ) ;
params . knew_row_stride = k_padded . stride ( - 3 ) ;
params . vnew_row_stride = v_padded . stride ( - 3 ) ;
params . knew_head_stride = k_padded . stride ( - 2 ) ;
params . vnew_head_stride = v_padded . stride ( - 2 ) ;
}
if ( seqlens_k_ . has_value ( ) ) {
auto seqlens_k = seqlens_k_ . value ( ) ;
TORCH_CHECK ( seqlens_k . dtype ( ) = = torch : : kInt32 , " seqlens_k must have dtype int32 " ) ;
2023-09-16 16:20:16 +08:00
CHECK_DEVICE ( seqlens_k ) ;
CHECK_CONTIGUOUS ( seqlens_k ) ;
2023-09-04 15:00:59 +08:00
CHECK_SHAPE ( seqlens_k , batch_size ) ;
params . cu_seqlens_k = static_cast < int * > ( seqlens_k . data_ptr ( ) ) ;
}
params . is_seqlens_k_cumulative = ! ( seqlens_k_ . has_value ( ) ) ;
2023-09-16 16:20:16 +08:00
if ( rotary_cos_ . has_value ( ) ) {
TORCH_CHECK ( k_ . has_value ( ) , " If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided " ) ;
auto rotary_cos = rotary_cos_ . value ( ) ;
CHECK_DEVICE ( rotary_cos ) ;
params . rotary_dim = rotary_cos . size ( 1 ) * 2 ;
TORCH_CHECK ( params . rotary_dim < = head_size , " rotary_dim must be <= headdim " ) ;
TORCH_CHECK ( params . rotary_dim % 16 = = 0 , " Only rotary dimensions divisible by 16 are currently supported " ) ;
const int seqlen_ro = rotary_cos . size ( 0 ) ;
TORCH_CHECK ( seqlen_ro > = seqlen_k , " cos/sin seqlen must be at least the seqlen of KV cache " ) ;
CHECK_SHAPE ( rotary_cos , seqlen_ro , params . rotary_dim / 2 ) ;
CHECK_CONTIGUOUS ( rotary_cos ) ;
TORCH_CHECK ( rotary_cos . scalar_type ( ) = = q_dtype , " rotary_cos must have the same dtype as query " ) ;
TORCH_CHECK ( rotary_sin_ . has_value ( ) , " If rotary cos is provided, rotary sin must also be provided " ) ;
auto rotary_sin = rotary_sin_ . value ( ) ;
CHECK_DEVICE ( rotary_sin ) ;
CHECK_SHAPE ( rotary_sin , seqlen_ro , params . rotary_dim / 2 ) ;
CHECK_CONTIGUOUS ( rotary_sin ) ;
TORCH_CHECK ( rotary_sin . scalar_type ( ) = = q_dtype , " rotary_cos must have the same dtype as query " ) ;
params . rotary_cos_ptr = rotary_cos . data_ptr ( ) ;
params . rotary_sin_ptr = rotary_sin . data_ptr ( ) ;
params . is_rotary_interleaved = is_rotary_interleaved ;
} else {
params . rotary_dim = 0 ;
}
2023-10-04 07:27:26 +08:00
if ( cache_batch_idx_ . has_value ( ) ) {
auto cache_batch_idx = cache_batch_idx_ . value ( ) ;
CHECK_DEVICE ( cache_batch_idx ) ;
CHECK_CONTIGUOUS ( cache_batch_idx ) ;
TORCH_CHECK ( cache_batch_idx . scalar_type ( ) = = torch : : kInt32 , " cache_batch_idx must have dtype int32 " ) ;
params . cache_batch_idx = reinterpret_cast < int * > ( cache_batch_idx . data_ptr ( ) ) ;
}
2024-01-22 07:28:36 +08:00
set_params_splitkv ( params , batch_size , num_heads ,
head_size , seqlen_k , seqlen_q ,
head_size_rounded , /*dropout*/ 0.f , num_splits , dprops , opts ) ;
2023-09-04 15:00:59 +08:00
2024-01-23 14:47:30 +08:00
if ( paged_KV ) {
params . block_table = block_table . data_ptr < int > ( ) ;
params . block_table_batch_stride = block_table . stride ( 0 ) ;
}
params . page_block_size = page_block_size ;
2024-01-30 12:44:23 +08:00
set_params_alibi ( params , alibi_slopes_ , batch_size , num_heads ) ;
2023-12-20 14:56:06 +08:00
2023-09-04 15:00:59 +08:00
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
2024-01-23 14:47:30 +08:00
// Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx,
// or paged KV cache
run_mha_fwd ( params , stream , /*force_split_kernel=*/ k_ . has_value ( ) | | cache_batch_idx_ . has_value ( ) | | paged_KV ) ;
2023-09-04 15:00:59 +08:00
if ( head_size_og % 8 ! = 0 ) {
out = out . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
if ( out_ . has_value ( ) ) { out_ . value ( ) . copy_ ( out ) ; }
if ( k_ . has_value ( ) ) {
// It's expensive to copy the KV cache here for the case where head size not divisible by 8,
// but we don't expect to get this case in practice. This is just so that the code works for that case.
kcache . copy_ ( kcache_padded . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ) ;
vcache . copy_ ( vcache_padded . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ) ;
}
}
2023-09-21 14:38:22 +08:00
if ( seqlenq_ngroups_swapped ) {
out = out . transpose ( 1 , 2 ) . reshape ( { batch_size , 1 , num_heads_k * seqlen_q , head_size_og } ) ;
softmax_lse = softmax_lse . reshape ( { batch_size , num_heads_k * seqlen_q , 1 } ) ;
2023-09-11 13:56:33 +08:00
}
2023-09-04 15:00:59 +08:00
return { out , softmax_lse } ;
}
2023-07-17 20:26:11 +08:00
PYBIND11_MODULE ( TORCH_EXTENSION_NAME , m ) {
m . doc ( ) = " FlashAttention " ;
m . def ( " fwd " , & mha_fwd , " Forward pass " ) ;
m . def ( " varlen_fwd " , & mha_varlen_fwd , " Forward pass (variable length) " ) ;
m . def ( " bwd " , & mha_bwd , " Backward pass " ) ;
m . def ( " varlen_bwd " , & mha_varlen_bwd , " Backward pass (variable length) " ) ;
2023-09-04 15:00:59 +08:00
m . def ( " fwd_kvcache " , & mha_fwd_kvcache , " Forward pass, with KV-cache " ) ;
2023-07-17 20:26:11 +08:00
}