flash-attention/benchmarks/benchmark_causal.py

106 lines
4.2 KiB
Python
Raw Normal View History

from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
2022-10-31 09:06:06 +08:00
from flash_attn.utils.benchmark import benchmark_forward, benchmark_all, pytorch_profiler
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
2022-10-31 09:06:06 +08:00
# from flash_attn.triton.fused_attention import attention as attention
from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func
from flash_attn.flash_attn_triton_og import attention as attention_og
try:
from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax
except ImportError:
scaled_upper_triang_masked_softmax = None
def attention_pytorch(qkv, dropout_p=0.0, causal=True):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
dropout_p: float
Output:
output: (batch_size, seqlen, nheads, head_dim)
"""
batch_size, seqlen, _, nheads, d = qkv.shape
q, k, v = qkv.unbind(dim=2)
q = rearrange(q, 'b t h d -> (b h) t d')
k = rearrange(k, 'b s h d -> (b h) d s')
softmax_scale = 1.0 / math.sqrt(d)
# Preallocate attn_weights for `baddbmm`
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
'(b h) t s -> b h t s', h=nheads)
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1)
attention_drop = F.dropout(attention, dropout_p)
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
return output.to(dtype=qkv.dtype)
def attention_megatron(qkv):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
Output:
output: (batch_size, seqlen, nheads, head_dim)
"""
batch_size, seqlen, _, nheads, d = qkv.shape
q, k, v = qkv.unbind(dim=2)
q = rearrange(q, 'b t h d -> (b h) t d')
k = rearrange(k, 'b s h d -> (b h) d s')
softmax_scale = 1.0 / math.sqrt(d)
# Preallocate attn_weights for `baddbmm`
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
'(b h) t s -> b h t s', h=nheads)
attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0)
output = torch.einsum('bhts,bshd->bthd', attention, v)
return output.to(dtype=qkv.dtype)
torch.manual_seed(0)
repeats = 30
batch_size = 2
seqlen = 4096
nheads = 12
headdim = 128
2022-10-31 09:06:06 +08:00
# batch_size = 64
# seqlen = 512
# nheads = 8
# headdim = 128
dropout_p = 0.0
causal = True
dtype = torch.bfloat16
device = 'cuda'
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
requires_grad=True)
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=qkv.device)
benchmark_all(flash_attn_unpadded_qkvpacked_func, rearrange(qkv, 'b s ... -> (b s) ...'),
cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention')
benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal,
repeats=repeats, desc='PyTorch Attention')
benchmark_all(flash_attn_qkvpacked_func, qkv, causal=causal, repeats=repeats, desc='FlashAttention Triton')
pytorch_profiler(flash_attn_qkvpacked_func, qkv, causal=causal, backward=True)
2022-10-31 09:06:06 +08:00
q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
requires_grad=True) for _ in range(3)]
2022-10-31 09:06:06 +08:00
benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG')
# pytorch_profiler(attention, q, k, v, 1.0, backward=True)
if scaled_upper_triang_masked_softmax is not None:
benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention')