flash-attention/tests/models/test_gpt_neox.py

105 lines
4.1 KiB
Python
Raw Normal View History

2023-04-19 12:43:37 +08:00
# Copyright (c) 2023, Tri Dao.
2023-03-29 16:21:25 +08:00
import time
import pytest
2023-08-19 11:59:35 +08:00
import torch
2023-03-29 16:21:25 +08:00
from flash_attn.models.gpt import GPTLMHeadModel
2023-08-19 11:59:35 +08:00
from flash_attn.models.gpt_neox import gpt_neox_config_to_gpt2_config, remap_state_dict_hf_gpt_neox
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import AutoTokenizer, GPTNeoXConfig
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
2023-03-29 16:21:25 +08:00
2023-08-19 11:59:35 +08:00
@pytest.mark.parametrize("model_name", ["EleutherAI/gpt-neox-20b"])
2023-03-29 16:21:25 +08:00
def test_gptj_state_dict(model_name):
config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name))
2023-08-19 11:59:35 +08:00
pretrained_state_dict = remap_state_dict_hf_gpt_neox(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
2023-03-29 16:21:25 +08:00
state_dict = model.state_dict()
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
@pytest.mark.parametrize(
"model_name",
[
"EleutherAI/pythia-1b",
"EleutherAI/pythia-2.8b",
"EleutherAI/gpt-neox-20b",
"togethercomputer/RedPajama-INCITE-7B-Base",
],
)
2023-03-29 16:21:25 +08:00
def test_gpt_neox_optimized(model_name):
"""Check that our implementation of GPT-NeoX (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
2023-08-19 11:59:35 +08:00
device = "cuda"
2023-03-29 16:21:25 +08:00
config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name))
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = config.activation_function in [
"gelu_fast",
"gelu_new",
"gelu_approx",
"gelu_pytorch_tanh",
]
config.fused_dropout_add_ln = True
2023-03-29 16:21:25 +08:00
config.residual_in_fp32 = True
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
2023-08-19 11:59:35 +08:00
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
2023-03-29 16:21:25 +08:00
with torch.no_grad():
out = model.transformer(input_ids)
logits = model(input_ids).logits
del model
# Need at least 2 GPUs, otherwise we'll OOM for the 20B model
2023-03-29 16:21:25 +08:00
# Without device_map, the model is loaded on the CPU, which is very slow
2023-08-19 11:59:35 +08:00
model_ref = GPTNeoXForCausalLM.from_pretrained(model_name, device_map="auto")
2023-03-29 16:21:25 +08:00
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.gpt_neox(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
2023-08-19 11:59:35 +08:00
model_hf = GPTNeoXForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map={"": device}
)
2023-03-29 16:21:25 +08:00
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.gpt_neox(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
2023-08-19 11:59:35 +08:00
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
2023-03-29 16:21:25 +08:00
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
assert (out - out_ref).abs().mean().item() < 2 * (out_hf - out_ref).abs().mean().item()
2023-08-19 11:59:35 +08:00
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * (
logits_hf - logits_ref
).abs().max().item()
assert (logits - logits_ref).abs().mean().item() < 2 * (
logits_hf - logits_ref
).abs().mean().item()