flash-attention/tests/models/test_opt.py

84 lines
3.6 KiB
Python
Raw Normal View History

2023-01-16 14:14:31 +08:00
import re
import pytest
2023-08-19 11:59:35 +08:00
import torch
2023-01-16 14:14:31 +08:00
from flash_attn.models.gpt import GPTLMHeadModel
2023-08-19 11:59:35 +08:00
from flash_attn.models.opt import opt_config_to_gpt2_config, remap_state_dict_hf_opt
2023-01-16 14:14:31 +08:00
from flash_attn.utils.pretrained import state_dict_from_pretrained
2023-08-19 11:59:35 +08:00
from transformers import OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM
2023-01-16 14:14:31 +08:00
2023-08-19 11:59:35 +08:00
@pytest.mark.parametrize(
"model_name", ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"]
)
2023-01-16 14:14:31 +08:00
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
def test_opt_state_dict(model_name):
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
2023-03-23 07:16:58 +08:00
pretrained_state_dict = remap_state_dict_hf_opt(state_dict_from_pretrained(model_name), config)
2023-01-16 14:14:31 +08:00
model = GPTLMHeadModel(config)
state_dict = model.state_dict()
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
2023-08-19 11:59:35 +08:00
@pytest.mark.parametrize(
"model_name", ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"]
)
2023-01-16 14:14:31 +08:00
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
def test_opt_optimized(model_name):
"""Check that our implementation of OPT (without all optimizations enabled) matches the
2023-01-16 14:14:31 +08:00
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
2023-08-19 11:59:35 +08:00
device = "cuda"
2023-01-16 14:14:31 +08:00
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
config.use_flash_attn = True
config.fused_bias_fc = True
2023-01-18 11:59:06 +08:00
config.fused_mlp = True
2023-01-16 14:14:31 +08:00
config.fused_dropout_add_ln = True
# Only prenorm supports residual_in_fp32
2023-08-19 11:59:35 +08:00
config.residual_in_fp32 = getattr(config, "prenorm", True)
2023-01-16 14:14:31 +08:00
config.pad_vocab_size_multiple = 8
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device)
model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device)
model.eval()
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
2023-08-19 11:59:35 +08:00
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
)
if model_name != "facebook/opt-350m": # The OPT-350m projects the embeddings to dimension 512
2023-01-16 14:14:31 +08:00
out = model.transformer(input_ids)
out_hf = model_hf.model(input_ids).last_hidden_state
out_ref = model_ref.model(input_ids).last_hidden_state
2023-08-19 11:59:35 +08:00
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
2023-01-16 14:14:31 +08:00
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
logits = model(input_ids).logits
logits_hf = model_hf(input_ids).logits
logits_ref = model_ref(input_ids).logits
2023-08-19 11:59:35 +08:00
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 3 * (
logits_hf - logits_ref
).abs().max().item()