flash-attention/tests/modules/test_embedding_parallel.py

85 lines
3.4 KiB
Python
Raw Normal View History

# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytest
from einops import rearrange
from apex.transformer import parallel_state
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('has_pos_emb', [True, False])
# @pytest.mark.parametrize('has_pos_emb', [True])
@pytest.mark.parametrize('dim', [1024])
def test_embedding_parallel(dim, world_size, has_pos_emb, dtype):
vocab_size = 50264
seqlen = 2048
assert vocab_size % world_size == 0
assert dim % world_size == 0
rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl', init_method='env://')
device = f'cuda:{torch.distributed.get_rank()}'
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 1024
assert (batch_size * seqlen) % world_size == 0
input_ids_pt = torch.randint(0, vocab_size, (batch_size, seqlen), device=device)
input_ids = input_ids_pt.detach().clone()
model_pt = GPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0,
device=device, dtype=dtype)
model = ParallelGPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0,
parallel_state.get_tensor_model_parallel_group(),
device=device, dtype=dtype)
partition_vocab_size = vocab_size // world_size
partition_dim = dim // world_size
with torch.no_grad():
model.word_embeddings.weight.copy_(
model_pt.word_embeddings.weight[rank * partition_vocab_size:(rank + 1) * partition_vocab_size]
)
if has_pos_emb:
model.position_embeddings.weight.copy_(
model_pt.position_embeddings.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
)
out = model(input_ids, combine_batch_seqlen_dim=True)
out_pt = rearrange(model_pt(input_ids), 'b s d -> (b s) d')
partition_batch_dim = batch_size * seqlen // world_size
assert torch.allclose(
out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
g = torch.randn_like(out_pt)
out_pt.backward(g)
out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim])
parallel_state.destroy_model_parallel()
assert torch.allclose(
model.word_embeddings.weight.grad,
model_pt.word_embeddings.weight.grad[rank * partition_vocab_size:(rank + 1) * partition_vocab_size],
rtol=rtol, atol=atol
)
if has_pos_emb:
assert torch.allclose(
model.position_embeddings.weight.grad,
model_pt.position_embeddings.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
rtol=rtol, atol=atol
)