flash-attention/tests/models/test_gpt_generation_parallel.py

134 lines
6.4 KiB
Python
Raw Normal View History

# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_generation_parallel.py -k "parallel"
import os
import re
import torch
import pytest
from einops import rearrange
from transformers import GPT2Config, GPT2Tokenizer
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF
from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.models.gpt import remap_state_dict_gpt2
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.distributed import all_gather_raw
# @pytest.mark.parametrize('world_size', [1, 2, 4, 8])
@pytest.mark.parametrize('world_size', [2])
# @pytest.mark.parametrize('fused_ft_kernel', [False, True])
@pytest.mark.parametrize('fused_ft_kernel', [True])
# @pytest.mark.parametrize('rotary', [False, True])
@pytest.mark.parametrize('rotary', [False])
@pytest.mark.parametrize('model_name', ["gpt2"])
def test_tensor_parallel(model_name, rotary, fused_ft_kernel, world_size):
"""Check that our implementation of GPT2 generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
dtype = torch.float16
rtol, atol = 3e-3, 3e-1
config = GPT2Config.from_pretrained(model_name)
if rotary:
config.n_positions = 0
config.rotary_emb_dim = 64
config.residual_in_fp32 = True
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
config.pad_vocab_size_multiple = 8 * world_size
config.sequence_parallel = False # Need to set this to False for generation
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl', init_method='env://')
device = f'cuda:{torch.distributed.get_rank()}'
assert world_size <= torch.distributed.get_world_size()
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch.cuda.set_device(device)
from apex.transformer import parallel_state
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
# if not rotary, we load the weight from HF but ignore the position embeddings.
# The model would be nonsense but it doesn't matter for the test.
model = GPTLMHeadModel.from_pretrained(model_name, config, strict=not rotary, device=device,
dtype=dtype, process_group=process_group,
world_size=world_size, rank=rank)
model.eval()
if not rotary:
model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device)
model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device, dtype=dtype)
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
input_ids = tokenizer("Hello, my dog is cute and ",
return_tensors="pt").input_ids.to(device=device)
max_length = 30
# input_ids = torch.randint(0, 100, (1, 10), dtype=torch.long, device='cuda')
# max_length = input_ids.shape[1] + 40
# Slow generation for reference
sequences = []
scores = []
cur_input_ids = input_ids
with torch.inference_mode():
logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group)
logits = rearrange(logits, '(n b) d -> b (n d)',
b=input_ids.shape[0])[..., :config.vocab_size]
scores.append(logits)
sequences.append(scores[-1].argmax(dim=-1))
for _ in range(input_ids.shape[1] + 1, max_length):
cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], 'b -> b 1')], dim=-1)
logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group)
logits = rearrange(logits, '(n b) d -> b (n d)',
b=input_ids.shape[0])[..., :config.vocab_size]
scores.append(logits)
sequences.append(scores[-1].argmax(dim=-1))
sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1)
scores = tuple(scores)
print(sequences)
out = model.generate(input_ids=input_ids, max_length=max_length, tensor_parallel=world_size,
vocab_size=config.vocab_size, fused_ft_kernel=fused_ft_kernel,
return_dict_in_generate=True, output_scores=True, timing=True)
print(out.sequences)
if fused_ft_kernel:
out_cg = model.generate(
input_ids=input_ids, max_length=max_length, tensor_parallel=world_size,
vocab_size=config.vocab_size, fused_ft_kernel=fused_ft_kernel, cg=True,
return_dict_in_generate=True, output_scores=True, timing=True)
print(out_cg.sequences)
if not rotary:
out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=True, output_scores=True)
out_ref = model_ref.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=True, output_scores=True)
print(f'Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}')
print(f'Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}')
print(f'HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}')
print(f'HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}')
assert torch.all(out.sequences == sequences)
assert torch.allclose(torch.stack(out.scores, dim=1), torch.stack(scores, dim=1),
rtol=rtol, atol=atol)
if not rotary:
assert torch.all(out.sequences == out_ref.sequences)
assert torch.all(out.sequences == out_hf.sequences)
assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()
parallel_state.destroy_model_parallel()