flash-attention/flash_attn/utils/generation.py

269 lines
12 KiB
Python
Raw Normal View History

# Copyright (c) 2023, Tri Dao.
2022-12-28 12:58:50 +08:00
# Adapted from https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/forward_step.py#L31
from typing import Optional, Union, Sequence, Callable
import gc
2023-01-08 11:05:09 +08:00
import time
2022-12-28 12:58:50 +08:00
from dataclasses import dataclass, field
2023-01-08 11:05:09 +08:00
from collections import namedtuple
2022-12-28 12:58:50 +08:00
import torch
from torch import Tensor
2023-01-08 11:05:09 +08:00
from torch.profiler import profile, record_function, ProfilerActivity
2022-12-28 12:58:50 +08:00
from einops import rearrange
from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput
2022-12-28 12:58:50 +08:00
@dataclass
class InferenceParams:
"""Inference parameters that are passed to the main model in order
to efficienly calculate and store the context during inference."""
max_sequence_len: int
max_batch_size: int
sequence_len_offset: int = 0
batch_size_offset: int = 0
key_value_memory_dict: dict = field(default_factory=dict)
fused_ft_kernel: bool = False
lengths_per_sample: Optional[Tensor] = None
2022-12-28 12:58:50 +08:00
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170
def modify_logits_for_top_p_filtering(logits, top_p):
"""Set the logits for none top-p values to -inf."""
if top_p <= 0.0:
return
# First sort and calculate cumulative sum of probabilities.
sorted_logits, sorted_indices = torch.sort(logits, descending=False)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits = logits.masked_fill(indices_to_remove, float('-inf'))
def sample(logits, top_k=1, top_p=0.0, temperature=1.0):
"""Sample from top-k logits.
Arguments:
logits: Tensor of shape (batch_size, vocab_size)
"""
if top_k == 1: # Short-circuit for greedy decoding
return logits.argmax(dim=-1)
else:
if top_p > 0.0:
assert top_p <= 1.0, 'top-p should be in (0, 1].'
if top_k > 0:
top_k = min(top_k, logits.size(-1)) # Safety check
logits_top, indices = torch.topk(logits, top_k, dim=-1)
logits_top /= temperature
modify_logits_for_top_p_filtering(logits_top, top_p)
return indices[
torch.arange(indices.shape[0], device=indices.device),
torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1)
]
else:
logits_top = logits / temperature
modify_logits_for_top_p_filtering(logits_top, top_p)
return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1)
2023-01-08 11:05:09 +08:00
def decode(input_ids, model, max_length, top_k=1, top_p=0.0, temperature=1.0,
vocab_size=None, tensor_parallel=1, fused_ft_kernel=False, cg=False, timing=False):
"""Decoding, either greedy or with top-k or top-p sampling.
If top-k = 0, don't limit the number of candidates (pure sampling).
Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
then top-p.
2022-12-28 12:58:50 +08:00
We assume that all sequences in the same batch have the same length.
2022-12-28 12:58:50 +08:00
Arguments:
input_ids: (batch, seq_len)
max_length: int
Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
2022-12-28 12:58:50 +08:00
sequences: (batch, max_length)
scores: tuples of (batch, vocab_size)
"""
batch_size, seqlen_og = input_ids.shape
if cg:
assert fused_ft_kernel
if not hasattr(model, '_decoding_cache'):
model._decoding_cache = None
model._decoding_cache = update_graph_cache(
model, model._decoding_cache, batch_size, seqlen_og, max_length,
tensor_parallel=tensor_parallel
)
inference_params = model._decoding_cache.inference_params
inference_params.max_sequence_len = max_length
inference_params.max_batch_size = batch_size
inference_params.sequence_len_offset = 0
else:
inference_params = InferenceParams(max_sequence_len=max_length, max_batch_size=batch_size,
fused_ft_kernel=fused_ft_kernel)
2022-12-28 12:58:50 +08:00
scores = []
with torch.inference_mode():
logits = model(input_ids, inference_params=inference_params).logits[:, -1]
if vocab_size is not None:
logits = logits[..., :vocab_size]
2022-12-28 12:58:50 +08:00
scores.append(logits)
next_token = sample(logits, top_k=top_k, top_p=top_p, temperature=temperature)
2022-12-28 12:58:50 +08:00
sequences = [next_token]
inference_params.sequence_len_offset = seqlen_og
2023-01-08 11:05:09 +08:00
if timing:
start = time.time()
2022-12-28 12:58:50 +08:00
while True:
position_ids = torch.full((batch_size, 1), inference_params.sequence_len_offset,
2023-01-08 11:05:09 +08:00
dtype=torch.long, device=input_ids.device)
if not cg:
logits = model(rearrange(next_token, 'b -> b 1'), position_ids=position_ids,
inference_params=inference_params).logits[:, -1]
else:
logits = model._decoding_cache.run(rearrange(next_token, 'b -> b 1'), position_ids,
inference_params.sequence_len_offset)
if vocab_size is not None:
logits = logits[..., :vocab_size]
2022-12-28 12:58:50 +08:00
scores.append(logits)
next_token = sample(logits, top_k=top_k, temperature=temperature)
2022-12-28 12:58:50 +08:00
sequences.append(next_token)
inference_params.sequence_len_offset += 1
if inference_params.sequence_len_offset >= max_length - 1:
break
2023-01-08 11:05:09 +08:00
if timing:
torch.cuda.synchronize()
2023-01-08 11:05:09 +08:00
print(f'Decoding time: {time.time() - start}')
output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
return output_cls(
2022-12-28 12:58:50 +08:00
sequences=torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1),
scores=tuple(scores)
)
class GenerationMixin:
def generate(self, input_ids, max_length, top_k=1, top_p=0.0, temperature=1.0,
return_dict_in_generate=False, output_scores=False, **kwargs):
output = decode(input_ids, self, max_length, top_k=top_k, top_p=top_p,
temperature=temperature, **kwargs)
2022-12-28 12:58:50 +08:00
if not output_scores:
output.scores = None
return output if return_dict_in_generate else output.sequences
2023-01-08 11:05:09 +08:00
def allocate_kv_cache(max_batch_size, max_seqlen, nheads, headdim, layers: Union[int, Sequence],
device, dtype=torch.float16):
assert dtype in [torch.float16, torch.bfloat16, torch.float32]
packsize = 4 if dtype == torch.float32 else 8
assert headdim % packsize == 0
k_cache_shape = (max_batch_size, nheads, headdim // packsize, max_seqlen, packsize)
v_cache_shape = (max_batch_size, nheads, max_seqlen, headdim)
if isinstance(layers, int):
layers = range(layers)
return {i: (torch.empty(k_cache_shape, device=device, dtype=dtype),
torch.empty(v_cache_shape, device=device, dtype=dtype))
for i in layers}
2023-01-08 11:05:09 +08:00
def seqlen_to_seqlen_type(seqlen: int) -> int:
"""Convert sequence length to a seqlen_type.
This is used to determine which cuda graph to use.
Arguments:
seqlen: int
"""
return 0 if seqlen < 32 else (1 if seqlen < 2048 else 2)
def seqlen_type_to_seqlen(seqlen_type: int) -> int:
assert seqlen_type in [0, 1, 2]
return 1 if seqlen_type == 0 else (32 if seqlen_type == 1 else 2048)
@dataclass
class DecodingCGCache:
max_batch_size: int = 0
max_seqlen: int = 0
device = None
dtype = None
callables: dict = field(default_factory=dict)
mempool = None
inference_params: Optional[InferenceParams] = None
run: Optional[Callable] = None
@torch.inference_mode()
def update_graph_cache(model, cache, batch_size, seqlen_og, max_seqlen, tensor_parallel=1,
dtype=None):
if cache is None:
cache = DecodingCGCache()
param_example = next(iter(model.parameters()))
device = param_example.device
if dtype is None:
dtype = param_example.dtype
if ((device, dtype) != (cache.device, cache.dtype) or batch_size > cache.max_batch_size
or max_seqlen > cache.max_seqlen): # Invalidate the cache
cache.callables = {}
cache.mempool = None
cache.inference_params = None
gc.collect()
cache.device, cache.dtype = device, dtype
cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
headdim = getattr(model.config, 'head_dim',
model.config.hidden_size // model.config.num_attention_heads)
kv_cache = allocate_kv_cache(
batch_size, max_seqlen, model.config.num_attention_heads // tensor_parallel, headdim,
model.config.num_hidden_layers, device, dtype
)
lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
cache.inference_params = InferenceParams(
max_sequence_len=max_seqlen, max_batch_size=batch_size,
sequence_len_offset=seqlen_og, key_value_memory_dict=kv_cache, fused_ft_kernel=True,
lengths_per_sample=lengths_per_sample
)
cache.mempool = torch.cuda.graphs.graph_pool_handle()
for s_type in range(seqlen_to_seqlen_type(seqlen_og), seqlen_to_seqlen_type(max_seqlen) + 1):
if s_type not in cache.callables:
seqlen = min(max(seqlen_og, seqlen_type_to_seqlen(s_type)), max_seqlen)
cache.callables[s_type] = capture_graph(
model, cache.inference_params, batch_size, seqlen_og, seqlen, mempool=cache.mempool
)
def dispatch(input_ids, position_ids, seqlen):
return cache.callables[seqlen_to_seqlen_type(seqlen)](input_ids, position_ids, seqlen)
cache.run = dispatch
cache.inference_params.sequence_length_offset = 0 # Reset so it's not confusing
return cache
def capture_graph(model, inference_params, batch_size, seqlen_og, max_seqlen, mempool=None):
assert max_seqlen >= seqlen_og
2023-01-08 11:05:09 +08:00
device = next(iter(model.parameters())).device
input_ids = torch.full((batch_size, 1), 0, dtype=torch.long, device=device)
position_ids = torch.full((batch_size, 1), 0, dtype=torch.long, device=device)
inference_params.lengths_per_sample[:] = seqlen_og
# Warmup before capture
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(2):
2023-01-08 11:05:09 +08:00
logits = model(input_ids, position_ids=position_ids,
inference_params=inference_params).logits[:, -1]
s.synchronize()
torch.cuda.current_stream().wait_stream(s)
# Captures the graph
# To allow capture, automatically sets a side stream as the current stream in the context
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, pool=mempool):
logits = model(input_ids, position_ids=position_ids,
inference_params=inference_params).logits[:, -1]
2023-01-08 11:05:09 +08:00
def run(new_input_ids, new_position_ids, seqlen):
inference_params.lengths_per_sample[:] = seqlen
input_ids.copy_(new_input_ids)
position_ids.copy_(new_position_ids)
graph.replay()
return logits
2023-01-08 11:05:09 +08:00
return run