2023-01-16 14:14:31 +08:00
|
|
|
import re
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
|
|
from transformers import OPTConfig
|
|
|
|
|
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
|
|
|
|
|
|
|
|
|
from flash_attn.models.gpt import GPTLMHeadModel
|
|
|
|
|
from flash_attn.models.opt import remap_state_dict_opt, opt_config_to_gpt2_config
|
|
|
|
|
from flash_attn.utils.pretrained import state_dict_from_pretrained
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"])
|
|
|
|
|
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
|
|
|
|
|
def test_opt_state_dict(model_name):
|
|
|
|
|
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
|
|
|
|
|
pretrained_state_dict = remap_state_dict_opt(state_dict_from_pretrained(model_name), config)
|
|
|
|
|
model = GPTLMHeadModel(config)
|
|
|
|
|
state_dict = model.state_dict()
|
|
|
|
|
assert state_dict.keys() == pretrained_state_dict.keys()
|
|
|
|
|
for k in state_dict.keys():
|
|
|
|
|
assert state_dict[k].shape == pretrained_state_dict[k].shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"])
|
|
|
|
|
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
|
|
|
|
|
def test_opt_optimized(model_name):
|
2023-01-16 17:20:04 +08:00
|
|
|
"""Check that our implementation of OPT (without all optimizations enabled) matches the
|
2023-01-16 14:14:31 +08:00
|
|
|
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
|
|
|
|
forward pass in fp16, when compared to the HF forward pass in fp32.
|
|
|
|
|
"""
|
|
|
|
|
dtype = torch.float16
|
|
|
|
|
device = 'cuda'
|
|
|
|
|
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
|
|
|
|
|
config.use_flash_attn = True
|
|
|
|
|
config.fused_bias_fc = True
|
|
|
|
|
config.fused_dropout_add_ln = True
|
|
|
|
|
# Only prenorm supports residual_in_fp32
|
|
|
|
|
config.residual_in_fp32 = getattr(config, 'prenorm', True)
|
|
|
|
|
config.pad_vocab_size_multiple = 8
|
|
|
|
|
|
|
|
|
|
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device)
|
|
|
|
|
model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device)
|
|
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
|
model_ref.eval()
|
|
|
|
|
model_hf.eval()
|
|
|
|
|
|
|
|
|
|
torch.manual_seed(0)
|
|
|
|
|
batch_size = 2
|
|
|
|
|
max_seqlen = 256
|
|
|
|
|
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda')
|
|
|
|
|
input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
|
|
|
|
|
device='cuda')
|
|
|
|
|
if model_name != 'facebook/opt-350m': # The OPT-350m projects the embeddings to dimension 512
|
|
|
|
|
out = model.transformer(input_ids)
|
|
|
|
|
out_hf = model_hf.model(input_ids).last_hidden_state
|
|
|
|
|
out_ref = model_ref.model(input_ids).last_hidden_state
|
|
|
|
|
|
|
|
|
|
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
|
|
|
|
|
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
|
|
|
|
|
print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
|
|
|
|
|
print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
|
|
|
|
|
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
|
|
|
|
|
|
|
|
|
|
logits = model(input_ids).logits
|
|
|
|
|
logits_hf = model_hf(input_ids).logits
|
|
|
|
|
logits_ref = model_ref(input_ids).logits
|
|
|
|
|
|
|
|
|
|
print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
|
|
|
|
|
print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
|
|
|
|
|
print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
|
|
|
|
|
print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
|
|
|
|
|
assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
|