flash-attention/csrc/layer_norm/ln_bwd_kernels.cuh

329 lines
13 KiB
Plaintext
Raw Normal View History

#pragma once
namespace layer_norm {
template<typename Ktraits, bool Prenorm, bool Is_dropout, bool Has_residual, bool Has_rowscale>
__global__ __launch_bounds__(Ktraits::THREADS_PER_CTA)
void ln_bwd_kernel(layer_norm::BwdParams params) {
enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA };
enum { WARPS_M = Ktraits::WARPS_M };
enum { WARPS_N = Ktraits::WARPS_N };
enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW };
enum { COLS = Ktraits::COLS };
enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW };
enum { LDGS = Ktraits::LDGS };
enum { NUM_ELTS = Ktraits::ELTS_PER_LDG };
enum { THREADS_PER_WARP = Ktraits::THREADS_PER_WARP };
enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW };
using input_t = typename Ktraits::input_t;
using compute_t = typename Ktraits::compute_t;
using index_t = typename Ktraits::index_t;
using mask_t = typename Ktraits::mask_t;
using Ivec = typename Ktraits::Ivec;
using Rvec = typename Ktraits::Rvec;
using Ovec = typename Ktraits::Ovec;
using Wvec = typename Ktraits::Wvec;
using Cvec = typename Ktraits::Cvec;
using Mvec = typename Ktraits::Mvec;
using Reducer = typename Ktraits::Reducer;
using reduce_t = typename Reducer::Type;
extern __shared__ char smem_[];
const index_t tidx = threadIdx.x;
const index_t bidn = blockIdx.x % CTAS_PER_ROW;
const index_t bidm = blockIdx.x / CTAS_PER_ROW;
const index_t lane = tidx % THREADS_PER_WARP;
const index_t warp = tidx / THREADS_PER_WARP;
const index_t warp_m = warp / Ktraits::WARPS_N;
const index_t warp_n = warp % Ktraits::WARPS_N;
const index_t tid_r = warp_n * THREADS_PER_WARP + lane;
const index_t r = bidm * Ktraits::ROWS_PER_CTA + warp_m;
const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane;
static_assert(COLS == THREADS_PER_ROW * LDGS * NUM_ELTS * CTAS_PER_ROW);
Cvec dzy_sum[LDGS];
Cvec dz_sum[LDGS];
memset(dzy_sum, 0, sizeof(dzy_sum));
memset(dz_sum, 0, sizeof(dz_sum));
compute_t * smem_wgrad = reinterpret_cast<compute_t*>(smem_);
char *smem_dgrad = smem_ + Ktraits::SMEM_BYTES_WGRAD;
Reducer reducer(params, bidm, bidn, warp_m, warp_n, lane, smem_dgrad);
Sum<reduce_t> sum;
constexpr float rn = 1.f / float(COLS);
Wvec gamma[LDGS];
index_t idx = c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
gamma[it].load_from(params.gamma, idx);
idx += Ktraits::VEC_COLS_PER_LDG;
}
// TODO if ROWS_PER_CTA does not divide rows, we might get divergence in the
// last blocks with syncthreads!
// grid stride over rows
#pragma unroll 1
for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) {
const compute_t mu_r = static_cast<const compute_t *>(params.mu)[row];
const compute_t rs_r = static_cast<const compute_t *>(params.rs)[row];
const compute_t rowscale_val = Has_rowscale ? compute_t(static_cast<const input_t *>(params.rowscale)[row]) : 1.0f;
Mvec dmask[LDGS];
Rvec dx[LDGS];
compute_t dy[LDGS * NUM_ELTS];
compute_t y[LDGS * NUM_ELTS];
compute_t mdy_local = 0.f;
compute_t mdyy_local = 0.f;
index_t idx = row * Ktraits::VEC_COLS + c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
Rvec x;
Ovec dz;
dz.load_from(params.dz, idx);
if (Prenorm) { dx[it].load_from(params.dx, idx); }
x.load_from(params.x, idx);
if (Is_dropout) { dmask[it].load_from(params.dmask, idx); }
idx += Ktraits::VEC_COLS_PER_LDG;
#pragma unroll
for( int jt = 0; jt < NUM_ELTS; jt++ ) {
compute_t x_tmp = x.data.elt[jt];
compute_t y_tmp = rs_r * (x_tmp - mu_r);
compute_t dy_tmp = compute_t(gamma[it].data.elt[jt]);
dy_tmp *= compute_t(dz.data.elt[jt]);
compute_t dz_tmp = dz.data.elt[jt];
mdy_local += dy_tmp;
mdyy_local += dy_tmp * y_tmp;
dy[it * NUM_ELTS + jt] = dy_tmp;
y[it * NUM_ELTS + jt] = y_tmp;
dzy_sum[it].data.elt[jt] += dz_tmp * y_tmp;
dz_sum[it].data.elt[jt] += dz_tmp;
}
}
reduce_t result = reducer.allreduce({mdy_local, mdyy_local}, sum);
mdy_local = layer_norm::Get<0>::of<reduce_t, compute_t>(result) * rn;
mdyy_local = layer_norm::Get<1>::of<reduce_t, compute_t>(result) * rn;
idx = row * Ktraits::VEC_COLS + c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
Ivec dx0;
Rvec dx1;
#pragma unroll
for( int jt = 0; jt < NUM_ELTS; jt++ ) {
compute_t dy_tmp = dy[it * NUM_ELTS + jt];
compute_t y_tmp = y[it * NUM_ELTS + jt];
compute_t dx_tmp = rs_r * (dy_tmp - (mdyy_local * y_tmp + mdy_local));
compute_t dx_tmp_res = Prenorm ? dx_tmp + compute_t(dx[it].data.elt[jt]) : dx_tmp;
if (Has_residual) { dx1.data.elt[jt] = dx_tmp_res; }
compute_t dx0_tmp_res = Has_rowscale ? dx_tmp_res * rowscale_val : dx_tmp_res;
if (Is_dropout) {
dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res * params.dropout_scale : 0.f;
} else {
dx0.data.elt[jt] = dx0_tmp_res;
}
}
if (Has_residual) { dx1.store_to(params.dx1, idx); }
dx0.store_to(params.dx0, idx);
idx += Ktraits::VEC_COLS_PER_LDG;
}
} // end: grid stride loop
if( WARPS_M == 1 ) {
idx = r * Ktraits::VEC_COLS + c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
dz_sum[it].store_to(params.dbeta_part, idx);
dzy_sum[it].store_to(params.dgamma_part, idx);
idx += Ktraits::VEC_COLS_PER_LDG;
}
} else {
static_assert(WARPS_M == 1 || Ktraits::CTAS_PER_ROW == 1, "Multiple rows per CTA not supported for Multi-CTA.");
// Finalize reduction of part dgamma and dbeta for this CTA
// by reducing over the rows held across the WARPS_M warps
// Assumption: blockSize divides hidden size.
enum { NUM_RES = COLS / Ktraits::THREADS_PER_CTA };
static_assert(NUM_RES * Ktraits::THREADS_PER_CTA == COLS, "");
idx = warp_m * Ktraits::VEC_COLS + tid_r;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
dz_sum[it].store_to(smem_wgrad, idx);
idx += THREADS_PER_ROW;
}
__syncthreads();
compute_t cta_dz_sum[NUM_RES];
memset(cta_dz_sum, 0, sizeof(compute_t) * NUM_RES);
for( int it = 0; it < ROWS_PER_CTA; it++ ) {
for( int jt = 0; jt < NUM_RES; jt++ ) {
cta_dz_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
}
}
__syncthreads();
idx = warp_m * Ktraits::VEC_COLS + tid_r;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
dzy_sum[it].store_to(smem_wgrad, idx);
idx += THREADS_PER_ROW;
}
__syncthreads();
compute_t cta_dzy_sum[NUM_RES];
memset(cta_dzy_sum, 0, sizeof(compute_t) * NUM_RES);
for( int it = 0; it < ROWS_PER_CTA; it++ ) {
for( int jt = 0; jt < NUM_RES; jt++ ) {
cta_dzy_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
}
}
compute_t *dgamma_part = static_cast<compute_t *>(params.dgamma_part) + bidm * COLS + tidx;
for( int jt = 0; jt < NUM_RES; jt++ ) {
*dgamma_part = cta_dzy_sum[jt];
dgamma_part += Ktraits::THREADS_PER_CTA;
}
compute_t *dbeta_part = static_cast<compute_t *>(params.dbeta_part) + bidm * COLS + tidx;
for( int jt = 0; jt < NUM_RES; jt++ ) {
*dbeta_part = cta_dz_sum[jt];
dbeta_part += Ktraits::THREADS_PER_CTA;
}
}
}
template<typename Kernel_traits>
__global__ __launch_bounds__(Kernel_traits::THREADS_PER_CTA)
void ln_bwd_finalize_kernel(BwdParams params)
{
using compute_t = typename Kernel_traits::compute_t;
using weight_t = typename Kernel_traits::weight_t;
using index_t = typename Kernel_traits::index_t;
using Reducer = typename Kernel_traits::Reducer;
using reduce_t = typename Reducer::Type;
Sum<reduce_t> sum;
enum { NUM_ELT = Kernel_traits::ELTS_PER_LDG };
enum { THREADS_PER_WARP = Kernel_traits::THREADS_PER_WARP };
__shared__ char smem_[Kernel_traits::SMEM_BYTES_PER_CTA];
constexpr uint32_t bidm = 0;
const uint32_t bidn = blockIdx.x;
const uint32_t tidx = threadIdx.x;
const uint32_t warp = tidx / THREADS_PER_WARP;
const uint32_t lane = tidx % THREADS_PER_WARP;
Reducer reducer(params, bidm, bidn, 0, 0, lane, smem_);
const uint32_t c = bidn * THREADS_PER_WARP + lane;
const uint32_t c_out = bidn * THREADS_PER_WARP / 2 + lane;
constexpr uint32_t COL_STRIDE = Kernel_traits::CTAS * THREADS_PER_WARP;
for( uint32_t col = c, col_out = c_out; col < Kernel_traits::COLS; col += COL_STRIDE, col_out += COL_STRIDE / 2 ) {
// Each thread sums over NUM_ELT columns.
Vec<compute_t, NUM_ELT> dbeta_local, dgamma_local;
memset(&dgamma_local, 0, sizeof(dgamma_local));
memset(&dbeta_local, 0, sizeof(dbeta_local));
for( uint32_t row = warp; row < params.ctas_per_col; row += Kernel_traits::ROWS_PER_CTA ) {
index_t idx = row * Kernel_traits::COLS + col;
Vec<compute_t, NUM_ELT> dbeta_part, dgamma_part;
dbeta_part.load_from(params.dbeta_part, idx);
dgamma_part.load_from(params.dgamma_part, idx);
#pragma unroll
for( int it = 0; it < NUM_ELT; it++ ) {
dgamma_local.data.elt[it] += dgamma_part.data.elt[it];
dbeta_local.data.elt[it] += dbeta_part.data.elt[it];
}
}
void * smem_gamma = smem_;
void * smem_beta = &smem_[Kernel_traits::SMEM_BYTES_TRANSPOSE];
const int write_row = warp;
const int write_col = lane ^ write_row;
const int write_idx = write_row * THREADS_PER_WARP + write_col;
dgamma_local.store_to(smem_gamma, write_idx);
dbeta_local.store_to(smem_beta, write_idx);
__syncthreads();
// It would be probably safe to reuse the first row of smem_beta and smem_gamma
void * smem_gamma_out = &smem_[2 * Kernel_traits::SMEM_BYTES_TRANSPOSE];
void * smem_beta_out = &smem_[2 * Kernel_traits::SMEM_BYTES_TRANSPOSE + Kernel_traits::SMEM_BYTES_OUTPUT];
// More than one iter iff ROWS_PER_CTA < 32.
for( int w = warp; w < THREADS_PER_WARP; w += Kernel_traits::ROWS_PER_CTA ) {
const int read_row = lane;
const int read_col = w ^ read_row;
const int read_idx = read_row * THREADS_PER_WARP + read_col;
memset(&dbeta_local, 0, sizeof(dbeta_local));
memset(&dgamma_local, 0, sizeof(dgamma_local));
// Load beta and gamma transposed
if(read_row < Kernel_traits::ROWS_PER_CTA){
dbeta_local.load_from(smem_beta, read_idx);
dgamma_local.load_from(smem_gamma, read_idx);
}
// Call reducer on the loaded value(s) and convert.
#pragma unroll
for( int it = 0; it < NUM_ELT; it++ ) {
compute_t b_i = dbeta_local.data.elt[it];
compute_t g_i = dgamma_local.data.elt[it];
b_i = reducer.allreduce(b_i, sum);
g_i = reducer.allreduce(g_i, sum);
dgamma_local.data.elt[it] = g_i;
dbeta_local.data.elt[it] = b_i;
}
// Leader stores the result at the current column.
if(lane == 0){
dgamma_local.store_to(smem_gamma_out, w);
dbeta_local.store_to(smem_beta_out, w);
}
}
// All writes done.
__syncthreads();
// Pack and store: 2-wide stores with half the threads.
if( warp == Kernel_traits::ROWS_PER_CTA - 1 && lane < THREADS_PER_WARP / 2 ) {
using src_t = typename TypeToVec2<compute_t>::Type;
using dst_t = typename TypeToVec2<weight_t>::Type;
Vec<src_t, NUM_ELT> dbeta_vec2, dgamma_vec2;
Vec<dst_t, NUM_ELT> dbeta_out2, dgamma_out2;
dgamma_vec2.load_from(smem_gamma_out, lane);
dbeta_vec2.load_from(smem_beta_out, lane);
#pragma unroll
for( int it = 0; it < NUM_ELT; it++ ) {
dgamma_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dgamma_vec2.data.elt[it]);
dbeta_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dbeta_vec2.data.elt[it]);
}
dgamma_out2.store_to(params.dgamma, col_out);
dbeta_out2.store_to(params.dbeta, col_out);
}
}
}
} // namespace layer_norm