flash-attention/csrc/layer_norm/ln_fwd_kernels.cuh

160 lines
5.8 KiB
Plaintext
Raw Normal View History

#pragma once
#ifdef OLD_GENERATOR_PATH
#include <ATen/CUDAGeneratorImpl.h>
#else
#include <ATen/cuda/CUDAGeneratorImpl.h>
#endif
#include <ATen/cuda/detail/UnpackRaw.cuh> // For at::cuda::philox::unpack
#include <curand_kernel.h>
#include "ln.h"
namespace layer_norm {
template<typename Ktraits, bool Is_dropout, bool Has_residual, bool Has_rowscale>
__global__ __launch_bounds__(Ktraits::THREADS_PER_CTA)
void ln_fwd_kernel(FwdParams params) {
enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA };
enum { WARPS_N = Ktraits::WARPS_N };
enum { WARPS_M = Ktraits::WARPS_M };
enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW };
enum { VEC_COLS_PER_LDG = Ktraits::VEC_COLS_PER_LDG };
enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW };
enum { LDGS = Ktraits::LDGS };
enum { NUM_ELTS = Ktraits::NUM_ELTS };
enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW };
using input_t = typename Ktraits::input_t;
using residual_t = typename Ktraits::residual_t;
using output_t = typename Ktraits::output_t;
using index_t = typename Ktraits::index_t;
using compute_t = typename Ktraits::compute_t;
using mask_t = typename Ktraits::mask_t;
using Ivec = typename Ktraits::Ivec;
using Rvec = typename Ktraits::Rvec;
using Ovec = typename Ktraits::Ovec;
using Wvec = typename Ktraits::Wvec;
using Cvec = typename Ktraits::Cvec;
using Mvec = typename Ktraits::Mvec;
using Stats = typename Ktraits::Stats;
using stats_t = typename Stats::stats_t;
constexpr bool save_x = Has_residual || Is_dropout || !(std::is_same<input_t, residual_t>::value);
extern __shared__ char smem_[];
const index_t tidx = threadIdx.x;
const index_t bidn = blockIdx.x % CTAS_PER_ROW;
const index_t bidm = blockIdx.x / CTAS_PER_ROW;
const index_t lane = tidx % THREADS_PER_WARP;
const index_t warp = tidx / THREADS_PER_WARP;
const index_t warp_m = warp / WARPS_N;
const index_t warp_n = warp % WARPS_N;
const index_t r = bidm * ROWS_PER_CTA + warp_m;
const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane;
Stats stats(params, bidm, bidn, warp_m, warp_n, lane, smem_);
compute_t *mu_ptr = static_cast<compute_t *>(params.mu);
compute_t *rs_ptr = static_cast<compute_t *>(params.rs);
const input_t *rowscale = static_cast<input_t *>(params.rowscale);
// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/Dropout.cu
curandStatePhilox4_32_10_t state;
if (Is_dropout) {
auto seeds = at::cuda::philox::unpack(params.philox_args);
const index_t tidx_global = blockIdx.x * blockDim.x + threadIdx.x;
curand_init(std::get<0>(seeds), tidx_global, std::get<1>(seeds), &state);
}
Wvec gamma[LDGS];
Wvec beta[LDGS];
index_t idx = c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
gamma[it].load_from(params.gamma, idx);
beta[it].load_from(params.beta, idx);
idx += VEC_COLS_PER_LDG;
}
constexpr compute_t rn = 1.f / compute_t(Ktraits::COLS);
for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) {
const compute_t rowscale_val = Has_rowscale ? compute_t(rowscale[row]) : 1.0f;
index_t idx = row * Ktraits::VEC_COLS + c;
compute_t xf[LDGS * NUM_ELTS];
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
Ivec x0;
Rvec x1;
Rvec x;
Mvec dmask;
x0.load_from(params.x0, idx);
if (Has_residual) { x1.load_from(params.x1, idx); }
#pragma unroll
for( int jt = 0; jt < NUM_ELTS; jt++ ) {
// TD [2022-04-22]: We're memory bound, not compute bound, so we don't need to use
// the more efficient curand_uniform4.
mask_t keep = true;
if (Is_dropout) {
float rand = curand_uniform(&state);
keep = mask_t(rand <= params.dropout_keep_p);
}
compute_t x0_ij = Has_rowscale ? compute_t(x0.data.elt[jt]) * rowscale_val : compute_t(x0.data.elt[jt]);
compute_t x_ij;
if (Has_residual) {
compute_t x1_ij = compute_t(x1.data.elt[jt]);
x_ij = keep ? (Is_dropout ? x0_ij * params.dropout_scale : x0_ij) + x1_ij : x1_ij;
} else {
x_ij = keep ? (Is_dropout ? x0_ij * params.dropout_scale : x0_ij) : 0.f;
}
if (save_x) { x.data.elt[jt] = x_ij; }
xf[it * NUM_ELTS + jt] = x_ij;
if (Is_dropout) { dmask.data.elt[jt] = keep; }
}
if (save_x) { x.store_to(params.x, idx); }
if (Is_dropout) { dmask.store_to(params.dmask, idx); }
idx += VEC_COLS_PER_LDG;
}
stats_t s = stats.compute(xf, rn);
compute_t mu = layer_norm::Get<0>::of<stats_t, compute_t>(s);
compute_t m2 = layer_norm::Get<1>::of<stats_t, compute_t>(s);
if( bidn == 0 && warp_n == 0 && lane == 0 ) {
mu_ptr[row] = mu;
}
compute_t rs = rsqrtf(rn * m2 + params.epsilon);
if( bidn == 0 && warp_n == 0 && lane == 0 ) {
rs_ptr[row] = rs;
}
idx = row * Ktraits::VEC_COLS + c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
Ovec z;
#pragma unroll
for( int jt = 0; jt < NUM_ELTS; jt++ ) {
output_t y_ij = output_t(rs * (xf[it * NUM_ELTS + jt] - mu));
output_t g_ij = gamma[it].data.elt[jt];
output_t b_ij = beta[it].data.elt[jt];
z.data.elt[jt] = (g_ij * y_ij + b_ij);
}
z.store_to(params.z, idx);
idx += VEC_COLS_PER_LDG;
}
}
}
} // namespace layer_norm