flash-attention/flash_attn/layers/rotary.py

202 lines
8.6 KiB
Python
Raw Normal View History

2022-11-05 13:42:01 +08:00
# Inspired by https://github.com/facebookresearch/xformers/blob/main/xformers/components/positional_embedding/rotary.py
2022-05-21 05:21:58 +08:00
from typing import Tuple
import math
import torch
from einops import rearrange, repeat
2022-11-05 13:42:01 +08:00
import rotary_emb
2022-05-21 05:21:58 +08:00
2022-11-05 13:42:01 +08:00
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
2022-05-21 05:21:58 +08:00
2022-11-05 13:42:01 +08:00
def apply_rotary_emb_torch(x, cos, sin):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
"""
rotary_dim = cos.shape[-1] * 2
assert rotary_dim <= x.shape[-1]
cos = repeat(cos, 's d -> s 1 (2 d)')
sin = repeat(sin, 's d -> s 1 (2 d)')
return torch.cat([x[..., :rotary_dim] * cos + rotate_half(x[..., :rotary_dim]) * sin,
x[..., rotary_dim:]], dim=-1)
class ApplyRotaryEmb(torch.autograd.Function):
@staticmethod
def forward(ctx, x, cos, sin, inplace=False):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
rotary_dim must be <= headdim
Apply rotary embedding to the first rotary_dim of x.
"""
batch, seqlen, nheads, headdim = x.shape
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
assert seqlen <= rotary_seqlen
2022-12-17 17:34:57 +08:00
assert sin.shape == (rotary_seqlen, rotary_dim // 2)
2022-11-05 13:42:01 +08:00
x1, x2 = x[..., :rotary_dim].chunk(2, dim=-1)
out = torch.empty_like(x) if not inplace else x
o1, o2 = out[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (x1, x2)
2022-12-16 19:39:06 +08:00
rotary_emb.apply_rotary(x1, x2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), o1, o2, False)
2022-11-05 13:42:01 +08:00
if not inplace and rotary_dim < headdim:
out[..., rotary_dim:].copy_(x[..., rotary_dim:])
ctx.save_for_backward(cos, sin)
ctx.inplace = inplace
return out if not inplace else x
@staticmethod
def backward(ctx, do):
cos, sin = ctx.saved_tensors
_, seqlen, _, headdim = do.shape
rotary_dim = cos.shape[-1]
rotary_dim *= 2
inplace = ctx.inplace
do1, do2 = do[..., :rotary_dim].chunk(2, dim=-1)
dx = torch.empty_like(do) if not inplace else do
dx1, dx2 = dx[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (do1, do2)
2022-12-16 19:39:06 +08:00
rotary_emb.apply_rotary(do1, do2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), dx1, dx2, True)
2022-11-05 13:42:01 +08:00
if not inplace and rotary_dim < headdim:
dx[..., rotary_dim:].copy_(do[..., rotary_dim:])
return dx, None, None, None
apply_rotary_emb_func = ApplyRotaryEmb.apply
class ApplyRotaryEmbQKV_(torch.autograd.Function):
@staticmethod
2022-12-22 06:17:58 +08:00
def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None):
2022-11-05 13:42:01 +08:00
"""
qkv: (batch_size, seqlen, 3, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
2022-12-22 06:17:58 +08:00
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
2022-11-05 13:42:01 +08:00
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of q and k.
"""
batch, seqlen, three, nheads, headdim = qkv.shape
assert three == 3
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
assert seqlen <= rotary_seqlen
2022-12-22 06:17:58 +08:00
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
2022-11-05 13:42:01 +08:00
q1, q2 = qkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
2022-12-16 19:39:06 +08:00
rotary_emb.apply_rotary(q1, q2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), q1, q2, False)
2022-11-05 13:42:01 +08:00
k1, k2 = qkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1)
2022-12-22 06:17:58 +08:00
rotary_emb.apply_rotary(k1, k2, rearrange(cos_k[:seqlen], 's d -> s 1 d'),
rearrange(sin_k[:seqlen], 's d -> s 1 d'), k1, k2, False)
ctx.save_for_backward(cos, sin, cos_k, sin_k)
2022-11-05 13:42:01 +08:00
return qkv
@staticmethod
def backward(ctx, dqkv):
2022-12-22 06:17:58 +08:00
cos, sin, cos_k, sin_k = ctx.saved_tensors
2022-11-05 13:42:01 +08:00
_, seqlen, _, _, headdim = dqkv.shape
rotary_dim = cos.shape[-1]
rotary_dim *= 2
dq1, dq2 = dqkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
2022-12-16 19:39:06 +08:00
rotary_emb.apply_rotary(dq1, dq2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), dq1, dq2, True)
2022-11-05 13:42:01 +08:00
dk1, dk2 = dqkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1)
2022-12-22 06:17:58 +08:00
rotary_emb.apply_rotary(dk1, dk2, rearrange(cos_k[:seqlen], 's d -> s 1 d'),
rearrange(sin_k[:seqlen], 's d -> s 1 d'), dk1, dk2, True)
return dqkv, None, None, None, None
2022-11-05 13:42:01 +08:00
apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply
2022-05-21 05:21:58 +08:00
class RotaryEmbedding(torch.nn.Module):
"""
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
"""
2022-12-25 08:33:07 +08:00
def __init__(self, dim: int, base=10000, scale_base=0, device=None):
2022-12-22 06:17:58 +08:00
"""
If scale_base > 0, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
"""
2022-05-21 05:21:58 +08:00
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
2022-12-25 08:33:07 +08:00
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device,
dtype=torch.float32) / dim))
2022-05-21 05:21:58 +08:00
self.register_buffer("inv_freq", inv_freq)
2022-12-22 06:17:58 +08:00
self.scale_base = scale_base
2022-12-25 08:33:07 +08:00
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
/ (1.4 * dim) if scale_base > 0 else None)
2022-12-22 06:17:58 +08:00
self.register_buffer("scale", scale)
2022-05-21 05:21:58 +08:00
2022-11-05 13:42:01 +08:00
self._seq_len_cached = 0
2022-05-21 05:21:58 +08:00
self._cos_cached = None
self._sin_cached = None
2022-12-22 06:17:58 +08:00
self._cos_k_cached = None
self._sin_k_cached = None
2022-05-21 05:21:58 +08:00
def _update_cos_sin_cache(self, x, seqlen_offset=0):
2022-11-05 13:42:01 +08:00
"""x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim)
"""
seqlen = x.shape[1] + seqlen_offset
2022-05-21 05:21:58 +08:00
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
2022-11-05 13:42:01 +08:00
if (seqlen > self._seq_len_cached or self._cos_cached.device != x.device
2022-05-21 05:21:58 +08:00
or self._cos_cached.dtype != x.dtype):
2022-11-05 13:42:01 +08:00
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=x.device, dtype=self.inv_freq.dtype)
2022-05-21 05:21:58 +08:00
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
2022-12-25 08:33:07 +08:00
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
2022-12-22 06:17:58 +08:00
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(x.dtype)
self._sin_cached = torch.sin(freqs).to(x.dtype)
else:
power = ((torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
- seqlen // 2) / self.scale_base)
2022-12-25 08:33:07 +08:00
scale = self.scale.to(device=power.device) ** rearrange(power, 's -> s 1')
2022-12-22 06:17:58 +08:00
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
2022-05-21 05:21:58 +08:00
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
"""
seqlen_offset: can be used in generation where the qkv being passed in is only the last
token in the batch.
"""
self._update_cos_sin_cache(qkv, seqlen_offset)
2022-12-22 06:17:58 +08:00
if self.scale is None:
return apply_rotary_emb_qkv_(
qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:]
)
else:
return apply_rotary_emb_qkv_(
qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
self._cos_k_cached[seqlen_offset:], self._sin_k_cached[seqlen_offset:]
)