108 lines
4.9 KiB
Python
108 lines
4.9 KiB
Python
|
|
# Copyright (c) 2023, Tri Dao.
|
||
|
|
|
||
|
|
import math
|
||
|
|
import re
|
||
|
|
|
||
|
|
from collections import OrderedDict
|
||
|
|
|
||
|
|
import torch
|
||
|
|
import torch.nn.functional as F
|
||
|
|
|
||
|
|
from einops import rearrange
|
||
|
|
|
||
|
|
from transformers import GPT2Config, GPTNeoXConfig
|
||
|
|
|
||
|
|
|
||
|
|
def remap_state_dict_hf_gpt_neox(state_dict, config):
|
||
|
|
def key_mapping_layers(key):
|
||
|
|
return re.sub(r'^gpt_neox.', 'transformer.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
||
|
|
# Word embedding
|
||
|
|
def key_mapping_emb(key):
|
||
|
|
return re.sub(r'^transformer.embed_in.', 'transformer.embeddings.word_embeddings.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
||
|
|
word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight')
|
||
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||
|
|
pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
|
||
|
|
vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
||
|
|
state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
|
||
|
|
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
||
|
|
)
|
||
|
|
if getattr(config, 'tie_word_embeddings'):
|
||
|
|
state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
|
||
|
|
else:
|
||
|
|
output_embeddings = state_dict.pop('embed_out.weight')
|
||
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||
|
|
state_dict['lm_head.weight'] = F.pad(
|
||
|
|
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
||
|
|
)
|
||
|
|
|
||
|
|
# LayerNorm
|
||
|
|
def key_mapping_ln(key):
|
||
|
|
key = re.sub(r'^transformer.final_layer_norm.', r'transformer.ln_f.', key)
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).input_layernorm.', r'transformer.layers.\1.norm1.', key)
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).post_attention_layernorm.', r'transformer.layers.\1.norm2.', key)
|
||
|
|
return key
|
||
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
# MLP
|
||
|
|
def key_mapping_mlp(key):
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).mlp.dense_h_to_4h.', r'transformer.layers.\1.mlp.fc1.', key)
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).mlp.dense_4h_to_h.', r'transformer.layers.\1.mlp.fc2.', key)
|
||
|
|
return key
|
||
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
# Attention
|
||
|
|
for l in range(config.n_layer):
|
||
|
|
# We don't store these biases
|
||
|
|
state_dict.pop(f'transformer.layers.{l}.attention.bias')
|
||
|
|
state_dict.pop(f'transformer.layers.{l}.attention.masked_bias')
|
||
|
|
# GPT-NeoX stores Wqkv as ((nheads 3 headdim), hidden_dim)
|
||
|
|
# while we store Wqkv as ((3 nheads headdim), hidden_dim)
|
||
|
|
headdim = config.hidden_size // config.num_attention_heads
|
||
|
|
Wqkv = state_dict.pop(f'transformer.layers.{l}.attention.query_key_value.weight')
|
||
|
|
state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = rearrange(
|
||
|
|
Wqkv, '(nheads three headdim) ... -> (three nheads headdim) ...',
|
||
|
|
three=3, headdim=headdim
|
||
|
|
)
|
||
|
|
bqkv = state_dict.pop(f'transformer.layers.{l}.attention.query_key_value.bias')
|
||
|
|
state_dict[f'transformer.layers.{l}.mixer.Wqkv.bias'] = rearrange(
|
||
|
|
bqkv, '(nheads three headdim) -> (three nheads headdim)',
|
||
|
|
three=3, headdim=headdim
|
||
|
|
)
|
||
|
|
def key_mapping_attn(key):
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).attention.dense.',
|
||
|
|
r'transformer.layers.\1.mixer.out_proj.', key)
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).attention.rotary_emb.',
|
||
|
|
r'transformer.layers.\1.mixer.rotary_emb.', key)
|
||
|
|
return key
|
||
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
return state_dict
|
||
|
|
|
||
|
|
|
||
|
|
def gpt_neox_config_to_gpt2_config(gpt_neox_config: GPTNeoXConfig) -> GPT2Config:
|
||
|
|
assert gpt_neox_config.rotary_emb_base == 10000
|
||
|
|
return GPT2Config(
|
||
|
|
vocab_size=gpt_neox_config.vocab_size,
|
||
|
|
n_positions=0, # No absolute position embedding
|
||
|
|
n_embd=gpt_neox_config.hidden_size,
|
||
|
|
n_layer=gpt_neox_config.num_hidden_layers,
|
||
|
|
n_head=gpt_neox_config.num_attention_heads,
|
||
|
|
n_inner=gpt_neox_config.intermediate_size,
|
||
|
|
activation_function=gpt_neox_config.hidden_act,
|
||
|
|
resid_pdrop=0.0, # No dropout
|
||
|
|
embd_pdrop=0.0,
|
||
|
|
attn_pdrop=0.0,
|
||
|
|
layer_norm_epsilon=gpt_neox_config.layer_norm_eps,
|
||
|
|
initializer_range=gpt_neox_config.initializer_range,
|
||
|
|
bos_token_id=gpt_neox_config.bos_token_id,
|
||
|
|
eos_token_id=gpt_neox_config.eos_token_id,
|
||
|
|
# These are new arguments not in the original GPT2Config
|
||
|
|
prenorm=True,
|
||
|
|
parallel_block=gpt_neox_config.use_parallel_residual,
|
||
|
|
parallel_block_tied_norm=False,
|
||
|
|
rotary_emb_fraction=gpt_neox_config.rotary_pct,
|
||
|
|
tie_word_embeddings=gpt_neox_config.tie_word_embeddings,
|
||
|
|
)
|