flash-attention/tests/models/test_vit.py

51 lines
1.8 KiB
Python
Raw Normal View History

import re
import torch
import pytest
from timm.models.vision_transformer import vit_base_patch16_224
from flash_attn.models.vit import vit_base_patch16_224 as flash_vit_base_patch16_224
@pytest.mark.parametrize('fused_mlp', [False, True])
# @pytest.mark.parametrize('fused_mlp', [False])
@pytest.mark.parametrize('optimized', [False, True])
# @pytest.mark.parametrize('optimized', [True])
def test_vit(optimized, fused_mlp):
"""Check that our implementation of ViT matches the timm's implementation:
the output of our forward pass in fp16 should be around the same as
timm' forward pass in fp16, when compared to timm's forward pass in fp32.
"""
dtype = torch.float16
device = 'cuda'
kwargs = {}
if optimized:
kwargs = dict(use_flash_attn=True, fused_bias_fc=True, fused_dropout_add_ln=True)
kwargs['fused_mlp'] = fused_mlp
model = flash_vit_base_patch16_224(**kwargs).to(device=device, dtype=dtype)
model_ref = vit_base_patch16_224(pretrained=True).to(device=device)
model_timm = vit_base_patch16_224(pretrained=True).to(device=device, dtype=dtype)
model.load_state_dict(model_ref.state_dict())
model.eval()
model_ref.eval()
model_timm.eval()
torch.manual_seed(0)
batch_size = 2
x = torch.randn(batch_size, 3, 224, 224, device=device, dtype=dtype)
out = model(x)
out_timm = model_timm(x)
out_ref = model_ref(x.float())
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
print(f'timm fp16 max diff: {(out_timm - out_ref).abs().max().item()}')
print(f'timm fp16 mean diff: {(out_timm - out_ref).abs().mean().item()}')
2023-08-18 08:25:34 +08:00
rtol = 2 if not fused_mlp else 8
assert (out - out_ref).abs().max().item() < rtol * (out_timm - out_ref).abs().max().item()