187 lines
8.9 KiB
Python
187 lines
8.9 KiB
Python
|
|
# Run test with:
|
||
|
|
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py
|
||
|
|
|
||
|
|
import math
|
||
|
|
from functools import partial
|
||
|
|
|
||
|
|
import torch
|
||
|
|
import torch.nn as nn
|
||
|
|
import torch.nn.functional as F
|
||
|
|
import pytest
|
||
|
|
|
||
|
|
from einops import rearrange
|
||
|
|
|
||
|
|
from apex.transformer import parallel_state
|
||
|
|
from apex.transformer import tensor_parallel
|
||
|
|
|
||
|
|
from flash_attn.modules.mha import MHA, ParallelMHA
|
||
|
|
from flash_attn.modules.mlp import FusedDenseGeluDense, ParallelFusedDenseGeluDense
|
||
|
|
from flash_attn.modules.block import Block
|
||
|
|
|
||
|
|
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
|
||
|
|
|
||
|
|
|
||
|
|
@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
|
||
|
|
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
|
||
|
|
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
|
||
|
|
# @pytest.mark.parametrize('world_size', [2])
|
||
|
|
@pytest.mark.parametrize('dim', [1024])
|
||
|
|
def test_block_parallel(dim, world_size, dtype):
|
||
|
|
head_dim = 64
|
||
|
|
assert dim % head_dim == 0
|
||
|
|
num_heads = dim // head_dim
|
||
|
|
assert num_heads % world_size == 0
|
||
|
|
rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
|
||
|
|
if not torch.distributed.is_initialized():
|
||
|
|
torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
||
|
|
device = f'cuda:{torch.distributed.get_rank()}'
|
||
|
|
assert world_size <= torch.distributed.get_world_size()
|
||
|
|
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
||
|
|
rank = parallel_state.get_tensor_model_parallel_rank()
|
||
|
|
# set seed
|
||
|
|
torch.random.manual_seed(0)
|
||
|
|
batch_size = 8
|
||
|
|
seqlen = 1024
|
||
|
|
assert (batch_size * seqlen) % world_size == 0
|
||
|
|
x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype,
|
||
|
|
requires_grad=True)
|
||
|
|
residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True)
|
||
|
|
# We need to generate g here so that all processes get the same gradient,
|
||
|
|
# as rank 0 will have an extra bias that changes the RNG.
|
||
|
|
# If we don't divide by batch_size, the gradient gets a bit too large.
|
||
|
|
g = torch.randn_like(x_pt) / 32
|
||
|
|
x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_()
|
||
|
|
residual = tensor_parallel.scatter_to_sequence_parallel_region(residual_pt).detach().clone().requires_grad_()
|
||
|
|
|
||
|
|
mixer_cls_pt = partial(MHA, num_heads=num_heads, rotary_emb_dim=int(head_dim // 2),
|
||
|
|
use_flash_attn=True, device=device, dtype=dtype)
|
||
|
|
mlp_cls_pt = partial(FusedDenseGeluDense, hidden_features=4 * dim,
|
||
|
|
device=device, dtype=dtype)
|
||
|
|
norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype)
|
||
|
|
model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True)
|
||
|
|
with torch.no_grad():
|
||
|
|
nn.init.normal_(model_pt.norm1.weight)
|
||
|
|
nn.init.normal_(model_pt.norm1.bias)
|
||
|
|
nn.init.normal_(model_pt.norm2.weight)
|
||
|
|
nn.init.normal_(model_pt.norm2.bias)
|
||
|
|
|
||
|
|
mixer_cls = partial(ParallelMHA, num_heads=num_heads,
|
||
|
|
process_group=parallel_state.get_tensor_model_parallel_group(),
|
||
|
|
rotary_emb_dim=int(head_dim // 2), use_flash_attn=True,
|
||
|
|
device=device, dtype=dtype)
|
||
|
|
mlp_cls = partial(ParallelFusedDenseGeluDense, hidden_features=4 * dim,
|
||
|
|
process_group=parallel_state.get_tensor_model_parallel_group(),
|
||
|
|
device=device, dtype=dtype)
|
||
|
|
model = Block(dim, mixer_cls, mlp_cls, norm_cls, fused_dropout_add_ln=True,
|
||
|
|
sequence_parallel=True)
|
||
|
|
|
||
|
|
partition_dim = dim // world_size
|
||
|
|
partition_hidden_dim = 4 * dim // world_size
|
||
|
|
with torch.no_grad():
|
||
|
|
model.mixer.Wqkv.weight.copy_(
|
||
|
|
rearrange(rearrange(model_pt.mixer.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
|
||
|
|
'three o i -> (three o) i')
|
||
|
|
)
|
||
|
|
model.mixer.Wqkv.bias.copy_(
|
||
|
|
rearrange(rearrange(model_pt.mixer.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
|
||
|
|
'three o -> (three o)')
|
||
|
|
)
|
||
|
|
model.mixer.out_proj.weight.copy_(
|
||
|
|
model_pt.mixer.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
|
||
|
|
)
|
||
|
|
if rank == 0:
|
||
|
|
model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias)
|
||
|
|
model.mlp.fc1.weight.copy_(
|
||
|
|
model_pt.mlp.fc1.weight[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
|
||
|
|
)
|
||
|
|
model.mlp.fc1.bias.copy_(
|
||
|
|
model_pt.mlp.fc1.bias[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
|
||
|
|
)
|
||
|
|
model.mlp.fc2.weight.copy_(
|
||
|
|
model_pt.mlp.fc2.weight[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
|
||
|
|
)
|
||
|
|
if rank == 0:
|
||
|
|
model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias)
|
||
|
|
model.norm1.weight.copy_(model_pt.norm1.weight)
|
||
|
|
model.norm1.bias.copy_(model_pt.norm1.bias)
|
||
|
|
model.norm2.weight.copy_(model_pt.norm2.weight)
|
||
|
|
model.norm2.bias.copy_(model_pt.norm2.bias)
|
||
|
|
|
||
|
|
mixer_kwargs = {'seqlen': seqlen}
|
||
|
|
out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs)
|
||
|
|
out_pt, out_residual_pt = model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen),
|
||
|
|
rearrange(residual_pt, '(b s) d -> b s d', s=seqlen))
|
||
|
|
out_pt, out_residual_pt = [rearrange(x, 'b s d -> (b s) d') for x in [out_pt, out_residual_pt]]
|
||
|
|
partition_batch_dim = batch_size * seqlen // world_size
|
||
|
|
assert torch.allclose(
|
||
|
|
out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
||
|
|
rtol=rtol, atol=atol
|
||
|
|
)
|
||
|
|
assert torch.allclose(
|
||
|
|
out_residual, out_residual_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
||
|
|
rtol=rtol, atol=atol
|
||
|
|
)
|
||
|
|
|
||
|
|
out_pt.backward(g)
|
||
|
|
out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim])
|
||
|
|
# We want to iterate over parameters with _sequence_parallel=True in the same order,
|
||
|
|
# as different ranks might have different number of parameters (e.g., only rank 0 has bias).
|
||
|
|
params_seqparallel = {name: p for name, p in model.named_parameters()
|
||
|
|
if getattr(p, '_sequence_parallel', False)}
|
||
|
|
for _, p in sorted(params_seqparallel.items()):
|
||
|
|
if getattr(p, '_sequence_parallel', False):
|
||
|
|
torch.distributed.all_reduce(p.grad, group=parallel_state.get_tensor_model_parallel_group())
|
||
|
|
parallel_state.destroy_model_parallel()
|
||
|
|
|
||
|
|
assert torch.allclose(
|
||
|
|
x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
||
|
|
rtol=rtol, atol=atol
|
||
|
|
)
|
||
|
|
assert torch.allclose(
|
||
|
|
residual.grad, residual_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
||
|
|
rtol=rtol, atol=atol
|
||
|
|
)
|
||
|
|
# The error for d_weight and d_bias is quite a bit higher
|
||
|
|
assert torch.allclose(
|
||
|
|
model.mixer.Wqkv.weight.grad,
|
||
|
|
rearrange(rearrange(model_pt.mixer.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
|
||
|
|
'three o i -> (three o) i'),
|
||
|
|
rtol=rtol, atol=atol * 10
|
||
|
|
)
|
||
|
|
assert torch.allclose(
|
||
|
|
model.mixer.Wqkv.bias.grad,
|
||
|
|
rearrange(rearrange(model_pt.mixer.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
|
||
|
|
'three o -> (three o)'),
|
||
|
|
rtol=rtol, atol=atol * 5
|
||
|
|
)
|
||
|
|
assert torch.allclose(
|
||
|
|
model.mixer.out_proj.weight.grad,
|
||
|
|
model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
|
||
|
|
rtol=rtol, atol=atol * 10
|
||
|
|
)
|
||
|
|
if rank == 0:
|
||
|
|
assert torch.allclose(model.mixer.out_proj.bias.grad, model_pt.mixer.out_proj.bias.grad, rtol=rtol, atol=atol * 5)
|
||
|
|
assert torch.allclose(
|
||
|
|
model.mlp.fc1.weight.grad,
|
||
|
|
model_pt.mlp.fc1.weight.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
|
||
|
|
rtol=rtol, atol=atol * 10
|
||
|
|
)
|
||
|
|
assert torch.allclose(
|
||
|
|
model.mlp.fc1.bias.grad,
|
||
|
|
model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
|
||
|
|
rtol=rtol, atol=atol * 5
|
||
|
|
)
|
||
|
|
assert torch.allclose(
|
||
|
|
model.mlp.fc2.weight.grad,
|
||
|
|
model_pt.mlp.fc2.weight.grad[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
|
||
|
|
rtol=rtol, atol=atol * 10
|
||
|
|
)
|
||
|
|
if rank == 0:
|
||
|
|
assert torch.allclose(model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad,
|
||
|
|
rtol=rtol, atol=atol * 5)
|
||
|
|
|
||
|
|
assert torch.allclose(model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5)
|
||
|
|
assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5)
|
||
|
|
assert torch.allclose(model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5)
|
||
|
|
assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)
|