flash-attention/tests/models/test_gptj.py

172 lines
7.6 KiB
Python
Raw Normal View History

2023-04-15 07:50:01 +08:00
import time
2023-03-23 07:16:58 +08:00
import torch
import pytest
2023-03-29 16:21:25 +08:00
from transformers import GPTJConfig, AutoTokenizer
2023-03-23 07:16:58 +08:00
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.models.gptj import remap_state_dict_hf_gptj, gptj_config_to_gpt2_config
from flash_attn.utils.pretrained import state_dict_from_pretrained
2023-04-15 07:50:01 +08:00
from flash_attn.utils.generation import update_graph_cache
2023-03-23 07:16:58 +08:00
@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_state_dict(model_name):
config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
pretrained_state_dict = remap_state_dict_hf_gptj(state_dict_from_pretrained(model_name), config)
model = GPTLMHeadModel(config, device='meta') # Without device='meta' init is very slow
state_dict = model.state_dict()
rotary_inv_freq_keys = {f'transformer.layers.{l}.mixer.rotary_emb.inv_freq'
for l in range(config.n_layer)}
assert state_dict.keys() == pretrained_state_dict.keys() | rotary_inv_freq_keys
for k in state_dict.keys() - rotary_inv_freq_keys:
assert state_dict[k].shape == pretrained_state_dict[k].shape
@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_optimized(model_name):
"""Check that our implementation of GPT-J (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
device = 'cuda'
config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
config.use_flash_attn = False # FlashAttention doesn't support hdim 256 yet
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
2023-03-23 07:16:58 +08:00
config.residual_in_fp32 = True
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
2023-03-29 16:21:25 +08:00
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
2023-03-23 07:16:58 +08:00
input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
2023-03-29 16:21:25 +08:00
device=device)
2023-03-23 07:16:58 +08:00
with torch.no_grad():
out = model.transformer(input_ids)
logits = model(input_ids).logits
del model
2023-03-29 16:21:25 +08:00
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
2023-03-23 07:16:58 +08:00
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.transformer(input_ids).last_hidden_state
logits_ref = model_ref(input_ids).logits
del model_ref
2023-03-29 16:21:25 +08:00
model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
device_map={"": device})
2023-03-23 07:16:58 +08:00
model_hf.eval()
out_hf = model_hf.transformer(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
2023-04-15 07:50:01 +08:00
@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_generation(model_name):
"""Check that our implementation of GPT-J (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
device = 'cuda'
config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
config.use_flash_attn = False # FlashAttention doesn't support hdim 256 yet
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
# Only prenorm supports residual_in_fp32
config.residual_in_fp32 = True
tokenizer = AutoTokenizer.from_pretrained(model_name)
eos_token_id = tokenizer.eos_token_id
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
device=device)
model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
device_map={"": device})
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=True, output_scores=True)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
del model_hf
model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
model_ref.eval()
with torch.no_grad():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1]
del model_ref
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
print('Without CUDA graph')
torch.cuda.synchronize()
start = time.time()
out = model.generate(input_ids=input_ids, max_length=max_length,
eos_token_id=eos_token_id, fused_ft_kernel=True,
# eos_token_id=eos_token_id, fused_ft_kernel=False,
return_dict_in_generate=True, output_scores=True, timing=True,
teacher_outputs=out_hf.sequences)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print('With CUDA graph')
torch.cuda.synchronize()
start = time.time()
out_cg = model.generate(input_ids=input_ids, max_length=max_length,
fused_ft_kernel=True, cg=True,
return_dict_in_generate=True, output_scores=True, timing=True,
teacher_outputs=out_hf.sequences)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
with torch.no_grad():
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1):-1]
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
del model
hf_error = (logits_hf - logits_ref).abs().max().item()
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
print(f'HF fp16 logits max diff: {hf_error}')
print(f'Logits max diff: {(logits - logits_ref).abs().max().item() }')
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
print(f'Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }')
assert torch.equal(logits_cg, logits)