flash-attention/flash_attn/flash_attn_triton.py

568 lines
23 KiB
Python
Raw Normal View History

2022-10-31 09:06:06 +08:00
"""
Based on the FlashAttention implementation from Phil Tillet.
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
Changes:
- Implement both causal and non-causal attention.
- Implement cross-attention (not just self-attention).
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
2022-10-31 09:06:06 +08:00
- Make the backward for d=128 much faster by reducing register spilling.
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
2022-10-31 09:06:06 +08:00
small batch size * nheads.
"""
import math
import torch
import triton
import triton.language as tl
@triton.autotune(
configs=[
triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=8, num_stages=1),
triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
],
key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'IS_CAUSAL', 'BLOCK_HEADDIM']
)
@triton.heuristics(
{
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
2022-10-31 09:06:06 +08:00
}
)
@triton.jit
def _fwd_kernel(
Q, K, V, Out,
Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
softmax_scale,
stride_qb, stride_qh, stride_qm,
stride_kb, stride_kh, stride_kn,
stride_vb, stride_vh, stride_vn,
stride_ob, stride_oh, stride_om,
nheads, seqlen_q, seqlen_k, seqlen_q_rounded,
2022-10-31 09:06:06 +08:00
CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
IS_CAUSAL: tl.constexpr,
BLOCK_HEADDIM: tl.constexpr,
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr,
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
start_m = tl.program_id(0)
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
# off_b = tl.program_id(1)
# off_h = tl.program_id(2)
# off_hb = off_b * nheads + off_h
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_HEADDIM)
# Initialize pointers to Q, K, V
# Adding parenthesis around indexing might use int32 math instead of int64 math?
# https://github.com/openai/triton/issues/741
# I'm seeing a tiny bit of difference (5-7us)
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
# initialize pointer to m and l
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
2022-10-31 09:06:06 +08:00
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
# load q: it will stay in SRAM throughout
# [2022-10-30] TD: Idk why but in the case of EVEN_M=True and EVEN_N=False, if we just call
# tl.load(q_ptrs), we get the wrong output! Could be a bug in the compiler?
if EVEN_M & EVEN_N:
2022-10-31 09:06:06 +08:00
q = tl.load(q_ptrs)
else:
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
# loop over k, v and update accumulator
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
for start_n in range(0, end_n, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# -- compute qk ----
if EVEN_N:
k = tl.load(k_ptrs + start_n * stride_kn)
else:
k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k,
other=0.0)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k, trans_b=True)
if not EVEN_N:
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
if IS_CAUSAL:
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
# Slightly faster to multiply the softmax_scale here since the compiler can then
# fuse the mult and add into an fma instruction.
p = tl.exp(qk * softmax_scale - m_ij[:, None])
l_ij = tl.sum(p, 1)
# scale acc_o
acc_o_scale = tl.exp(m_i - m_ij)
# # -- update output accumulator --
# BUG: have to store and immediately load
tl.store(t_ptrs, acc_o_scale)
acc_o_scale = tl.load(t_ptrs)
acc_o = acc_o * acc_o_scale[:, None]
# update acc_o
if EVEN_N:
v = tl.load(v_ptrs + start_n * stride_vn)
else:
v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k,
other=0.0)
p = p.to(v.dtype)
acc_o += tl.dot(p, v)
# -- update statistics
m_i = m_ij
l_i_new = tl.exp(lse_i - m_ij) + l_ij
lse_i = m_ij + tl.log(l_i_new)
o_scale = tl.exp(m_i - lse_i)
# BUG: have to store and immediately load
tl.store(t_ptrs, o_scale)
o_scale = tl.load(t_ptrs)
acc_o = acc_o * o_scale[:, None]
# rematerialize offsets to save registers
start_m = tl.program_id(0)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
# write back l and m
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
2022-10-31 09:06:06 +08:00
tl.store(lse_ptrs, lse_i)
# initialize pointers to output
offs_n = tl.arange(0, BLOCK_HEADDIM)
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_n[None, :])
if EVEN_M:
tl.store(out_ptrs, acc_o)
else:
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
@triton.heuristics(
{
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
}
)
@triton.jit
def _bwd_preprocess_do_o_dot(
Out, DO, Delta,
stride_ob, stride_oh, stride_om,
stride_dob, stride_doh, stride_dom,
nheads, seqlen_q, seqlen_q_rounded,
EVEN_M: tl.constexpr,
BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr,
):
start_m = tl.program_id(0)
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_d = tl.arange(0, BLOCK_HEADDIM)
# load
if EVEN_M:
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :]).to(tl.float32)
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :]).to(tl.float32)
else:
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
mask=offs_m[:, None] < seqlen_q, other=0.0).to(tl.float32)
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
mask=offs_m[:, None] < seqlen_q, other=0.0).to(tl.float32)
delta = tl.sum(o * do, axis=1)
# write-back
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
@triton.jit
def _bwd_kernel_one_col_block(
start_n,
Q, K, V, softmax_scale,
DO, DQ, DK, DV,
LSE, D,
stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
seqlen_q, seqlen_k,
ATOMIC_ADD: tl.constexpr,
IS_CAUSAL: tl.constexpr,
BLOCK_HEADDIM: tl.constexpr,
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr,
2022-10-31 09:06:06 +08:00
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
# initialize row/col offsets
offs_qm = begin_m + tl.arange(0, BLOCK_M)
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
offs_m = tl.arange(0, BLOCK_M)
offs_k = tl.arange(0, BLOCK_HEADDIM)
# initialize pointers to value-like data
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :])
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :])
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_k[None, :])
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_k[None, :])
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_k[None, :])
# initialize dv amd dk
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
# k and v stay in SRAM throughout
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_N=False,
# if we just call # tl.load(k_ptrs), we get the wrong output!
if EVEN_N & EVEN_M:
k = tl.load(k_ptrs)
v = tl.load(v_ptrs)
else:
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
2022-10-31 09:06:06 +08:00
# loop over rows
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
start_m = tl.multiple_of(start_m, BLOCK_M)
offs_m_curr = start_m + offs_m
# load q, k, v, do on-chip
if EVEN_M:
q = tl.load(q_ptrs)
else:
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
2022-10-31 09:06:06 +08:00
# recompute p = softmax(qk, dim=-1).T
qk = tl.dot(q, k, trans_b=True)
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
2022-10-31 09:06:06 +08:00
if IS_CAUSAL:
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
lse_i = tl.load(LSE + offs_m_curr)
p = tl.exp(qk * softmax_scale - lse_i[:, None])
# compute dv
if EVEN_M:
do = tl.load(do_ptrs)
else:
do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
2022-10-31 09:06:06 +08:00
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
# compute dp = dot(v, do)
dp = tl.dot(do, v, trans_b=True)
# compute ds = p * (dp - delta[:, None])
# Putting the subtraction after the dp matmul (instead of before) is slightly faster
Di = tl.load(D + offs_m_curr)
# Converting ds to q.dtype here reduces register pressure and makes it much faster
# for BLOCK_HEADDIM=128
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
# compute dk = dot(ds.T, q)
dk += tl.dot(ds, q, trans_a=True)
# compute dq
if not ATOMIC_ADD:
if EVEN_M:
dq = tl.load(dq_ptrs, eviction_policy="evict_last")
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, eviction_policy="evict_last")
else:
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0,
eviction_policy="evict_last")
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q,
eviction_policy="evict_last")
2022-10-31 09:06:06 +08:00
else: # If we're parallelizing across the seqlen_k dimension
dq = tl.dot(ds, k)
if EVEN_M:
tl.atomic_add(dq_ptrs, dq)
else:
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
2022-10-31 09:06:06 +08:00
# increment pointers
dq_ptrs += BLOCK_M * stride_dqm
q_ptrs += BLOCK_M * stride_qm
do_ptrs += BLOCK_M * stride_dom
# write-back
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_k[None, :])
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_k[None, :])
if EVEN_N:
tl.store(dv_ptrs, dv)
tl.store(dk_ptrs, dk)
else:
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
2022-10-31 09:06:06 +08:00
def init_to_zero(name):
# def fn(nargs):
# with torch.no_grad():
# nargs[name].zero_()
# return fn
return lambda nargs: nargs[name].zero_()
@triton.autotune(
configs=[
triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
# Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1),
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1),
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1),
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1),
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1),
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1),
],
key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'IS_CAUSAL', 'BLOCK_HEADDIM'],
# reset_to_zero=['DQ']
)
@triton.heuristics(
{
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
"EVEN_N": lambda args: args["seqlen_k"] % (args["BLOCK_N"]) == 0,
}
)
2022-10-31 09:06:06 +08:00
@triton.jit
def _bwd_kernel(
Q, K, V,
DO, DQ, DK, DV,
LSE, D,
softmax_scale,
stride_qb, stride_qh, stride_qm,
stride_kb, stride_kh, stride_kn,
stride_vb, stride_vh, stride_vn,
stride_dob, stride_doh, stride_dom,
stride_dqb, stride_dqh, stride_dqm,
stride_dkb, stride_dkh, stride_dkn,
stride_dvb, stride_dvh, stride_dvn,
nheads, seqlen_q, seqlen_k, seqlen_q_rounded,
CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
IS_CAUSAL: tl.constexpr,
BLOCK_HEADDIM: tl.constexpr,
SEQUENCE_PARALLEL: tl.constexpr,
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr,
2022-10-31 09:06:06 +08:00
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
# offset pointers for batch/head
Q += off_b * stride_qb + off_h * stride_qh
K += off_b * stride_kb + off_h * stride_kh
V += off_b * stride_vb + off_h * stride_vh
DO += off_b * stride_dob + off_h * stride_doh
DQ += off_b * stride_dqb + off_h * stride_dqh
DK += off_b * stride_dkb + off_h * stride_dkh
DV += off_b * stride_dvb + off_h * stride_dvh
# pointer to row-wise quantities in value-like data
D += off_hb * seqlen_q_rounded
LSE += off_hb * seqlen_q_rounded
if not SEQUENCE_PARALLEL:
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
for start_n in range(0, num_block_n):
_bwd_kernel_one_col_block(
start_n,
Q, K, V, softmax_scale,
DO, DQ, DK, DV,
LSE, D,
stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
seqlen_q, seqlen_k,
ATOMIC_ADD=False,
IS_CAUSAL=IS_CAUSAL,
BLOCK_HEADDIM=BLOCK_HEADDIM,
EVEN_M=EVEN_M, EVEN_N=EVEN_N,
2022-10-31 09:06:06 +08:00
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
)
else:
start_n = tl.program_id(0)
_bwd_kernel_one_col_block(
start_n,
Q, K, V, softmax_scale,
DO, DQ, DK, DV,
LSE, D,
stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
seqlen_q, seqlen_k,
ATOMIC_ADD=True,
IS_CAUSAL=IS_CAUSAL,
BLOCK_HEADDIM=BLOCK_HEADDIM,
EVEN_M=EVEN_M, EVEN_N=EVEN_N,
2022-10-31 09:06:06 +08:00
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
)
def _flash_attn_forward(q, k, v, causal=False, softmax_scale=None):
# shape constraints
batch, seqlen_q, nheads, d = q.shape
_, seqlen_k, _, _ = k.shape
assert k.shape == (batch, seqlen_k, nheads, d)
assert v.shape == (batch, seqlen_k, nheads, d)
assert d in {16, 32, 64, 128}
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
assert q.is_cuda and k.is_cuda and v.is_cuda
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
# lse = torch.full((batch, nheads, seqlen_q_rounded), float('inf'), device=q.device,
# dtype=torch.float32)
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
o = torch.empty_like(q)
# BLOCK = 128
# num_warps = 4 if d <= 64 else 8
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
_fwd_kernel[grid](
q, k, v, o,
lse, tmp,
softmax_scale,
q.stride(0), q.stride(2), q.stride(1),
k.stride(0), k.stride(2), k.stride(1),
v.stride(0), v.stride(2), v.stride(1),
o.stride(0), o.stride(2), o.stride(1),
nheads, seqlen_q, seqlen_k, seqlen_q_rounded,
2022-10-31 09:06:06 +08:00
seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
causal, d,
# BLOCK_M=BLOCK, BLOCK_N=BLOCK,
# num_warps=num_warps,
# num_stages=1,
)
return o, lse, softmax_scale # softmax_scale could have been updated
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, causal=False, softmax_scale=None):
# Make sure that the last dimension is contiguous
if do.stride(-1) != 1:
do = do.contiguous()
batch, seqlen_q, nheads, d = q.shape
_, seqlen_k, _, _ = k.shape
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
assert lse.shape == (batch, nheads, seqlen_q_rounded)
# dq_accum = torch.zeros_like(q, dtype=torch.float32)
dq_accum = torch.empty_like(q, dtype=torch.float32)
delta = torch.empty_like(lse)
# delta = torch.zeros_like(lse)
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
_bwd_preprocess_do_o_dot[grid](
o, do, delta,
o.stride(0), o.stride(2), o.stride(1),
do.stride(0), do.stride(2), do.stride(1),
nheads, seqlen_q, seqlen_q_rounded,
BLOCK_M=128, BLOCK_HEADDIM=d,
)
# TODO: There are 2 Memcpy DtoD when I use the autotuner.
# BLOCK_M = 128
# BLOCK_N = 64
# num_warps = 4
grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
batch * nheads)
_bwd_kernel[grid](
q, k, v,
do, dq_accum, dk, dv,
lse, delta,
softmax_scale,
q.stride(0), q.stride(2), q.stride(1),
k.stride(0), k.stride(2), k.stride(1),
v.stride(0), v.stride(2), v.stride(1),
do.stride(0), do.stride(2), do.stride(1),
dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1),
dk.stride(0), dk.stride(2), dk.stride(1),
dv.stride(0), dv.stride(2), dv.stride(1),
nheads, seqlen_q, seqlen_k, seqlen_q_rounded,
seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
causal, d,
# SEQUENCE_PARALLEL=False,
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
# num_warps=num_warps,
# num_stages=1,
)
dq.copy_(dq_accum)
class FlashAttnQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, causal=False, softmax_scale=None):
"""
qkv: (batch, seqlen, 3, nheads, headdim)
"""
# Make sure that the last dimension is contiguous
if qkv.stride(-1) != 1:
qkv = qkv.contiguous()
o, lse, ctx.softmax_scale = _flash_attn_forward(
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], causal=causal, softmax_scale=softmax_scale
)
ctx.save_for_backward(qkv, o, lse)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
qkv, o, lse = ctx.saved_tensors
dqkv = torch.empty_like(qkv)
_flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse,
dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
causal=ctx.causal, softmax_scale=ctx.softmax_scale)
return dqkv, None, None
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
class FlashAttnKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, kv, causal=False, softmax_scale=None):
"""
q: (batch, seqlen, nheads, headdim)
kv: (batch, seqlen, 2, nheads, headdim)
"""
# Make sure that the last dimension is contiguous
q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
o, lse, ctx.softmax_scale = _flash_attn_forward(
q, kv[:, :, 0], kv[:, :, 1], causal=causal, softmax_scale=softmax_scale
)
ctx.save_for_backward(q, kv, o, lse)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
q, kv, o, lse = ctx.saved_tensors
dq = torch.empty_like(q)
dkv = torch.empty_like(kv)
_flash_attn_backward(do, q, qkv[:, :, 0], qkv[:, :, 1], o, lse,
dq, dkv[:, :, 0], dkv[:, :, 1],
causal=ctx.causal, softmax_scale=ctx.softmax_scale)
return dq, dkv, None, None
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
class FlashAttnFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, causal=False, softmax_scale=None):
"""
q, k, v: (batch_size, seqlen, nheads, headdim)
"""
# Make sure that the last dimension is contiguous
q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
o, lse, ctx.softmax_scale = _flash_attn_forward(q, k, v, causal=causal,
softmax_scale=softmax_scale)
ctx.save_for_backward(q, k, v, o, lse)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
q, k, v, o, lse = ctx.saved_tensors
dq = torch.empty_like(q)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
_flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv,
causal=ctx.causal, softmax_scale=ctx.softmax_scale)
return dq, dk, dv, None, None
flash_attn_func = FlashAttnFunc.apply