125 lines
5.6 KiB
Python
125 lines
5.6 KiB
Python
|
|
# Copyright (c) 2023, Tri Dao.
|
||
|
|
|
||
|
|
import math
|
||
|
|
import json
|
||
|
|
import re
|
||
|
|
from pathlib import Path
|
||
|
|
|
||
|
|
from collections import OrderedDict
|
||
|
|
|
||
|
|
import torch
|
||
|
|
import torch.nn.functional as F
|
||
|
|
|
||
|
|
from transformers import GPT2Config, LlamaConfig
|
||
|
|
|
||
|
|
|
||
|
|
def remap_state_dict_meta_llama(state_dict, config):
|
||
|
|
def key_mapping_layers(key):
|
||
|
|
return f'transformer.{key}' if not key.startswith('output.') else key
|
||
|
|
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
||
|
|
# Word embedding
|
||
|
|
def key_mapping_emb(key):
|
||
|
|
return re.sub(r'^transformer.tok_embeddings.', 'transformer.embeddings.word_embeddings.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
||
|
|
word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight')
|
||
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||
|
|
pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
|
||
|
|
vocab_size = (math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
|
||
|
|
* pad_vocab_size_multiple)
|
||
|
|
state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
|
||
|
|
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
||
|
|
)
|
||
|
|
if getattr(config, 'tie_word_embeddings'):
|
||
|
|
state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
|
||
|
|
else:
|
||
|
|
output_embeddings = state_dict.pop('output.weight')
|
||
|
|
# Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
|
||
|
|
# differently.
|
||
|
|
vocab_size = (math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
|
||
|
|
* pad_vocab_size_multiple)
|
||
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||
|
|
state_dict['lm_head.weight'] = F.pad(
|
||
|
|
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
||
|
|
)
|
||
|
|
|
||
|
|
# LayerNorm
|
||
|
|
def key_mapping_ln(key):
|
||
|
|
key = re.sub(r'^transformer.norm.', r'transformer.ln_f.', key)
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).attention_norm.', r'transformer.layers.\1.norm1.', key)
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).ffn_norm.', r'transformer.layers.\1.norm2.', key)
|
||
|
|
return key
|
||
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
# MLP
|
||
|
|
for l in range(config.n_layer):
|
||
|
|
w1 = state_dict.pop(f'transformer.layers.{l}.feed_forward.w1.weight')
|
||
|
|
w3 = state_dict.pop(f'transformer.layers.{l}.feed_forward.w3.weight')
|
||
|
|
# Our ordering is different
|
||
|
|
state_dict[f'transformer.layers.{l}.mlp.fc1.weight'] = torch.cat([w3, w1], dim=0)
|
||
|
|
def key_mapping_mlp(key):
|
||
|
|
return re.sub(r'^transformer.layers.(\d+).feed_forward.w2.',
|
||
|
|
r'transformer.layers.\1.mlp.fc2.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
# Attention
|
||
|
|
for l in range(config.n_layer):
|
||
|
|
Wq = state_dict.pop(f'transformer.layers.{l}.attention.wq.weight')
|
||
|
|
Wk = state_dict.pop(f'transformer.layers.{l}.attention.wk.weight')
|
||
|
|
Wv = state_dict.pop(f'transformer.layers.{l}.attention.wv.weight')
|
||
|
|
state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = torch.cat([Wq, Wk, Wv], dim=0)
|
||
|
|
# We don't store these
|
||
|
|
state_dict.pop(f'transformer.layers.{l}.attention.inner_attention.rope.freqs', None)
|
||
|
|
def key_mapping_attn(key):
|
||
|
|
return re.sub(r'^transformer.layers.(\d+).attention.wo.',
|
||
|
|
r'transformer.layers.\1.mixer.out_proj.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
return state_dict
|
||
|
|
|
||
|
|
|
||
|
|
def config_from_checkpoint(checkpoint_path: str, model_name: str) -> LlamaConfig:
|
||
|
|
"""Load a LlamaConfig from a checkpoint path."""
|
||
|
|
with open(Path(checkpoint_path) / model_name / 'params.json') as f:
|
||
|
|
params = json.load(f)
|
||
|
|
config = LlamaConfig(hidden_size=params['dim'], intermediate_size=None,
|
||
|
|
num_attention_heads=params['n_heads'],
|
||
|
|
num_hidden_layers=params['n_layers'],
|
||
|
|
rms_norm_eps=params['norm_eps'])
|
||
|
|
return config
|
||
|
|
|
||
|
|
|
||
|
|
def state_dicts_from_checkpoint(checkpoint_path: str, model_name: str) -> dict:
|
||
|
|
# Need to sort, otherwise we mess up the ordering and the weights are wrong
|
||
|
|
return [torch.load(path, map_location='cpu')
|
||
|
|
for path in sorted((Path(checkpoint_path) / model_name).glob('consolidated.*.pth'))]
|
||
|
|
|
||
|
|
|
||
|
|
def llama_config_to_gpt2_config(llama_config: LlamaConfig) -> GPT2Config:
|
||
|
|
return GPT2Config(
|
||
|
|
vocab_size=llama_config.vocab_size,
|
||
|
|
n_positions=0, # No absolute position embedding
|
||
|
|
n_embd=llama_config.hidden_size,
|
||
|
|
n_layer=llama_config.num_hidden_layers,
|
||
|
|
n_head=llama_config.num_attention_heads,
|
||
|
|
n_inner=llama_config.intermediate_size,
|
||
|
|
activation_function='swiglu', # Hardcode since HF calls it 'silu'
|
||
|
|
# Llama doesn't have dropout, idk if it's because they only release the inference code
|
||
|
|
resid_pdrop=0.0,
|
||
|
|
embd_pdrop=0.0,
|
||
|
|
attn_pdrop=0.0,
|
||
|
|
layer_norm_epsilon=llama_config.rms_norm_eps,
|
||
|
|
initializer_range=llama_config.initializer_range,
|
||
|
|
bos_token_id=llama_config.bos_token_id,
|
||
|
|
eos_token_id=llama_config.eos_token_id,
|
||
|
|
# These are new arguments not in the original GPT2Config
|
||
|
|
pad_token_id=llama_config.pad_token_id, # Idk if this does anything
|
||
|
|
rms_norm=True,
|
||
|
|
rotary_emb_fraction=1.0,
|
||
|
|
rotary_emb_interleaved=True,
|
||
|
|
tie_word_embeddings=False,
|
||
|
|
qkv_proj_bias=False,
|
||
|
|
out_proj_bias=False,
|
||
|
|
mlp_fc1_bias=False,
|
||
|
|
mlp_fc2_bias=False,
|
||
|
|
)
|