flash-attention/flash_attn/flash_attn_interface.py

379 lines
20 KiB
Python
Raw Normal View History

2022-05-21 05:21:58 +08:00
import torch
import torch.nn as nn
import torch.nn.functional as F
2022-05-21 05:21:58 +08:00
2022-05-27 04:57:38 +08:00
import flash_attn_cuda
2022-05-21 05:21:58 +08:00
2022-07-01 11:26:04 +08:00
def _get_block_size(device, head_dim, is_dropout):
assert head_dim % 8 == 0 and head_dim <= 128
return 256 if head_dim <= 64 else 128
2022-07-01 11:26:04 +08:00
def _flash_attn_forward(q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
2022-10-22 02:58:14 +08:00
dropout_p, softmax_scale, causal, return_softmax, num_splits=0,
generator=None):
"""
num_splits: how much to parallelize over the seqlen_q dimension. num_splits=0 means
it will be set by an internal heuristic. We're exposing num_splits mostly for benchmarking.
Don't change it unless you know what you're doing.
"""
softmax_lse, *rest = flash_attn_cuda.fwd(
q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
2022-10-22 02:58:14 +08:00
softmax_scale, False, causal, return_softmax, num_splits, generator
2022-07-01 11:26:04 +08:00
)
# if out.isnan().any() or softmax_lse.isnan().any():
2022-05-21 05:21:58 +08:00
# breakpoint()
S_dmask = rest[0] if return_softmax else None
2022-07-01 11:26:04 +08:00
return out, softmax_lse, S_dmask
2022-05-21 05:21:58 +08:00
2022-07-01 11:26:04 +08:00
def _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
2022-10-24 02:35:15 +08:00
max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, num_splits=0,
generator=None):
2022-10-24 02:35:15 +08:00
"""
num_splits: how much to parallelize over the seqlen_q dimension. num_splits=0 means
it will be set by an internal heuristic. Setting this too large (e.g. > 10) could make
numerical error of dK and dV larger (scaling as sqrt(num_splits)).
This hyperparameter can be tuned for performance, but default value (heuristic) should work fine.
"""
2022-07-01 11:26:04 +08:00
softmax_d = flash_attn_cuda.bwd(
dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
2022-10-24 02:35:15 +08:00
max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, num_splits, generator)
2022-07-01 11:26:04 +08:00
# if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
2022-05-21 05:21:58 +08:00
# breakpoint()
2022-07-01 11:26:04 +08:00
return dq, dk, dv, softmax_d
2022-05-21 05:21:58 +08:00
2022-07-01 11:26:04 +08:00
class FlashAttnQKVPackedFunc(torch.autograd.Function):
2022-05-21 05:21:58 +08:00
@staticmethod
2022-07-01 11:26:04 +08:00
def forward(ctx, qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_softmax):
2022-05-21 05:21:58 +08:00
# Save rng_state because the backward pass will regenerate the dropout mask
rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
2022-07-01 11:26:04 +08:00
out, softmax_lse, S_dmask = _flash_attn_forward(
qkv[:, 0], qkv[:, 1], qkv[:, 2], torch.empty_like(qkv[:, 0]), cu_seqlens, cu_seqlens,
max_seqlen, max_seqlen, dropout_p, softmax_scale, causal=causal,
return_softmax=return_softmax
2022-05-21 05:21:58 +08:00
)
2022-07-01 11:26:04 +08:00
ctx.save_for_backward(qkv, out, softmax_lse, cu_seqlens, rng_state)
2022-05-21 05:21:58 +08:00
ctx.dropout_p = dropout_p
2022-07-01 11:26:04 +08:00
ctx.max_seqlen = max_seqlen
2022-05-21 05:21:58 +08:00
ctx.softmax_scale = softmax_scale
ctx.causal = causal
2022-07-01 11:26:04 +08:00
return out if not return_softmax else (out, softmax_lse, S_dmask)
2022-05-21 05:21:58 +08:00
@staticmethod
2022-07-01 11:26:04 +08:00
def backward(ctx, dout, *args):
qkv, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
2022-05-21 05:21:58 +08:00
if rng_state is not None:
cur_rng_state = torch.cuda.get_rng_state()
torch.cuda.set_rng_state(rng_state)
2022-07-01 11:26:04 +08:00
dqkv = torch.empty_like(qkv)
_flash_attn_backward(
dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse,
dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens, cu_seqlens,
ctx.max_seqlen, ctx.max_seqlen, ctx.dropout_p, ctx.softmax_scale, ctx.causal
2022-05-21 05:21:58 +08:00
)
if rng_state is not None:
torch.cuda.set_rng_state(cur_rng_state)
return dqkv, None, None, None, None, None, None
2022-07-01 11:26:04 +08:00
class FlashAttnKVPackedFunc(torch.autograd.Function):
2022-05-21 05:21:58 +08:00
@staticmethod
2022-07-01 11:26:04 +08:00
def forward(ctx, q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
softmax_scale, causal, return_softmax):
# Save rng_state because the backward pass will regenerate the dropout mask
2022-05-21 05:21:58 +08:00
rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
if softmax_scale is None:
2022-07-01 11:26:04 +08:00
softmax_scale = q.shape[-1] ** (-0.5)
out, softmax_lse, S_dmask = _flash_attn_forward(
q, kv[:, 0], kv[:, 1], torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q,
max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax
2022-07-01 11:26:04 +08:00
)
ctx.save_for_backward(q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state)
ctx.dropout_p = dropout_p
ctx.max_seqlen_q = max_seqlen_q
ctx.max_seqlen_k = max_seqlen_k
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
if rng_state is not None:
cur_rng_state = torch.cuda.get_rng_state()
torch.cuda.set_rng_state(rng_state)
dq = torch.empty_like(q)
dkv = torch.empty_like(kv)
_flash_attn_backward(
dout, q, kv[:, 0], kv[:, 1], out, softmax_lse,
dq, dkv[:, 0], dkv[:, 1], cu_seqlens_q, cu_seqlens_k,
ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal
)
if rng_state is not None:
torch.cuda.set_rng_state(cur_rng_state)
return dq, dkv, None, None, None, None, None, None, None, None
class FlashAttnFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
softmax_scale, causal, return_softmax):
# Save rng_state because the backward pass will regenerate the dropout mask
rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, softmax_lse, S_dmask = _flash_attn_forward(
q, k, v, torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
2022-07-01 11:26:04 +08:00
dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax
2022-05-21 05:21:58 +08:00
)
2022-07-01 11:26:04 +08:00
ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state)
2022-05-21 05:21:58 +08:00
ctx.dropout_p = dropout_p
2022-07-01 11:26:04 +08:00
ctx.max_seqlen_q = max_seqlen_q
ctx.max_seqlen_k = max_seqlen_k
2022-05-21 05:21:58 +08:00
ctx.softmax_scale = softmax_scale
ctx.causal = causal
2022-07-01 11:26:04 +08:00
return out if not return_softmax else (out, softmax_lse, S_dmask)
2022-05-21 05:21:58 +08:00
@staticmethod
2022-07-01 11:26:04 +08:00
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
2022-05-21 05:21:58 +08:00
if rng_state is not None:
cur_rng_state = torch.cuda.get_rng_state()
torch.cuda.set_rng_state(rng_state)
2022-07-01 11:26:04 +08:00
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
_flash_attn_backward(
dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal
2022-05-21 05:21:58 +08:00
)
if rng_state is not None:
torch.cuda.set_rng_state(cur_rng_state)
2022-07-01 11:26:04 +08:00
return dq, dk, dv, None, None, None, None, None, None, None, None
class FlashAttnQKVPackedSplitFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p,
softmax_scale, causal, return_softmax):
# Save rng_state because the backward pass will regenerate the dropout mask
if dropout_p > 0:
rng_state0 = torch.cuda.get_rng_state()
generator1 = torch.Generator(device='cuda')
rng_state1 = generator1.get_state()
else:
rng_state0, generator1, rng_state1 = None, None, None
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
out = torch.empty_like(qkv[:, 0])
_, softmax_lse0, S_dmask0 = _flash_attn_forward(
qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[:batch_size0 + 1],
cu_seqlens[:batch_size0 + 1], max_seqlen0, max_seqlen0, dropout_p, softmax_scale,
causal=causal, return_softmax=return_softmax
)
s = torch.cuda.Stream()
with torch.cuda.stream(s):
_, softmax_lse1, S_dmask1 = _flash_attn_forward(
qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[batch_size0:],
cu_seqlens[batch_size0:], max_seqlen1, max_seqlen1, dropout_p, softmax_scale,
causal=causal, return_softmax=return_softmax, generator=generator1
)
torch.cuda.current_stream().wait_stream(s)
ctx.save_for_backward(qkv, out, softmax_lse0, softmax_lse1, cu_seqlens,
rng_state0, rng_state1)
ctx.dropout_p = dropout_p
ctx.max_seqlen0 = max_seqlen0
ctx.max_seqlen1 = max_seqlen1
ctx.batch_size0 = batch_size0
ctx.softmax_scale = softmax_scale
ctx.causal = causal
if not return_softmax:
return out
else:
max_seqlen_q = max(softmax_lse0.shape[2], softmax_lse1.shape[2])
max_seqlen_k = max(S_dmask0.shape[3], S_dmask1.shape[3])
softmax_lse = torch.cat([F.pad(softmax_lse0, (0, max_seqlen_q - softmax_lse0.shape[2])),
F.pad(softmax_lse1, (0, max_seqlen_q - softmax_lse1.shape[2]))],
dim=0)
return out, softmax_lse, S_dmask0, S_dmask1
@staticmethod
def backward(ctx, dout, *args):
qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1 = ctx.saved_tensors
batch_size0 = ctx.batch_size0
if rng_state0 is not None:
cur_rng_state = torch.cuda.get_rng_state()
torch.cuda.set_rng_state(rng_state0)
if rng_state1 is not None:
generator1 = torch.Generator(device='cuda')
generator1.set_state(rng_state1)
else:
generator1 = None
dqkv = torch.empty_like(qkv)
_flash_attn_backward(
dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse0,
dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[:batch_size0 + 1],
cu_seqlens[:batch_size0 + 1], ctx.max_seqlen0, ctx.max_seqlen0, ctx.dropout_p,
ctx.softmax_scale, ctx.causal
)
s = torch.cuda.Stream()
with torch.cuda.stream(s):
_flash_attn_backward(
dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse1,
dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[batch_size0:],
cu_seqlens[batch_size0:], ctx.max_seqlen1, ctx.max_seqlen1, ctx.dropout_p,
ctx.softmax_scale, ctx.causal, generator=generator1
)
torch.cuda.current_stream().wait_stream(s)
if rng_state0 is not None:
torch.cuda.set_rng_state(cur_rng_state)
return dqkv, None, None, None, None, None, None, None, None
2022-07-01 11:26:04 +08:00
def flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale=None,
causal=False, return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
Arguments:
qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into qkv.
max_seqlen: int. Maximum sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnQKVPackedFunc.apply(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale,
causal, return_attn_probs)
def flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
Arguments:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
kv: (total_k, 2, nheads, headdim), where total_k = total number of key tokens in the batch.
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnKVPackedFunc.apply(q, kv, cu_seqlens_q, cu_seqlens_k,
max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal,
return_attn_probs)
def flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale=None, causal=False, return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
Arguments:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
k: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch.
v: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch.
2022-07-01 11:26:04 +08:00
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnFunc.apply(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_attn_probs)
2022-05-21 05:21:58 +08:00
def flash_attn_unpadded_qkvpacked_split_func(
qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale=None,
causal=False, return_attn_probs=False):
"""
Split attention into 2 kernels running on 2 separate streams for performance reason:
e.g., if the batch has some sequences of length <= 128 and some > 128, it might be faster to
have one kernel dealing with seqlen <= 128 and one kernel for seqlen > 128.
dropout_p should be set to 0.0 during evaluation.
Arguments:
qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into qkv.
max_seqlen0: int. Maximum sequence length in 1st part of the batch.
max_seqlen1: int. Maximum sequence length in 2nd part of the batch.
batch_size0: int. Number of sequences in the 1st part of the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnQKVPackedSplitFunc.apply(qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0,
dropout_p, softmax_scale, causal, return_attn_probs)
2022-05-27 04:57:38 +08:00
def flash_attn_func(qkv, cu_seqlens, dropout_p, max_s, softmax_scale=None, causal=False,
2022-05-21 05:21:58 +08:00
return_attn_probs=False):
2022-07-01 11:26:04 +08:00
"""For backward-compatibility only, will remove soon.
dropout_p should be set to 0.0 during evaluation
2022-05-21 05:21:58 +08:00
"""
2022-07-01 11:26:04 +08:00
return flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_s, dropout_p, softmax_scale,
causal, return_attn_probs)