2024-07-12 00:53:36 +08:00
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
from einops import rearrange, repeat
|
|
|
|
|
from flash_attn_interface import flash_attn_func
|
|
|
|
|
|
|
|
|
|
ABS_TOL = 5e-3
|
|
|
|
|
REL_TOL = 1e-1
|
|
|
|
|
|
|
|
|
|
def construct_local_mask(
|
|
|
|
|
seqlen_q,
|
|
|
|
|
seqlen_k,
|
|
|
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
|
|
|
query_padding_mask=None,
|
|
|
|
|
key_padding_mask=None,
|
|
|
|
|
device=None,
|
|
|
|
|
):
|
|
|
|
|
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
|
|
|
|
|
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
|
|
|
|
|
sk = (
|
|
|
|
|
seqlen_k
|
|
|
|
|
if key_padding_mask is None
|
|
|
|
|
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
|
|
|
|
|
)
|
|
|
|
|
sq = (
|
|
|
|
|
seqlen_q
|
|
|
|
|
if query_padding_mask is None
|
|
|
|
|
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
|
|
|
|
|
)
|
|
|
|
|
if window_size[0] < 0:
|
|
|
|
|
return col_idx > row_idx + sk - sq + window_size[1]
|
|
|
|
|
else:
|
|
|
|
|
sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
|
|
|
|
|
return torch.logical_or(
|
|
|
|
|
col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
|
|
|
|
|
col_idx < row_idx + sk - sq - window_size[0],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def print_diffs(out, out_ref):
|
|
|
|
|
out_1d = out.flatten()
|
|
|
|
|
out_ref_1d = out_ref.flatten()
|
|
|
|
|
for idx, (e_o, e_o_ref) in enumerate(zip(out_1d, out_ref_1d)):
|
|
|
|
|
diff = e_o - e_o_ref
|
|
|
|
|
abs_diff = abs(diff)
|
|
|
|
|
abs_ref = abs(e_o_ref + 1e-5)
|
|
|
|
|
relative_diff = abs_diff / abs_ref
|
|
|
|
|
if abs_diff > ABS_TOL or relative_diff > REL_TOL:
|
|
|
|
|
print(f"==== diff ==== {idx}, test: {e_o}, ref: {e_o_ref}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def attention_ref(
|
|
|
|
|
q,
|
|
|
|
|
k,
|
|
|
|
|
v,
|
|
|
|
|
query_padding_mask=None,
|
|
|
|
|
key_padding_mask=None,
|
|
|
|
|
attn_bias=None,
|
|
|
|
|
dropout_p=0.0,
|
|
|
|
|
dropout_mask=None,
|
|
|
|
|
causal=False,
|
|
|
|
|
upcast=True,
|
|
|
|
|
reorder_ops=False,
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
Arguments:
|
|
|
|
|
q: (batch_size, seqlen_q, nheads, head_dim)
|
|
|
|
|
k: (batch_size, seqlen_k, nheads, head_dim)
|
|
|
|
|
v: (batch_size, seqlen_k, nheads, head_dim)
|
|
|
|
|
query_padding_mask: (batch_size, seqlen_q)
|
|
|
|
|
key_padding_mask: (batch_size, seqlen_k)
|
|
|
|
|
attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
|
|
|
|
|
dropout_p: float
|
|
|
|
|
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
|
|
|
|
|
causal: whether to apply causal masking
|
|
|
|
|
upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
|
|
|
|
|
output back to fp16/bf16.
|
|
|
|
|
reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
|
|
|
|
|
without changing the math. This is to estimate the numerical error from operation
|
|
|
|
|
reordering.
|
|
|
|
|
Output:
|
|
|
|
|
output: (batch_size, seqlen_q, nheads, head_dim)
|
|
|
|
|
attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
|
|
|
|
|
"""
|
|
|
|
|
dtype_og = q.dtype
|
|
|
|
|
if upcast:
|
|
|
|
|
q, k, v = q.float(), k.float(), v.float()
|
|
|
|
|
seqlen_q, seqlen_k = q.shape[1], k.shape[1]
|
|
|
|
|
k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
|
|
|
|
|
v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
|
|
|
|
|
d = q.shape[-1]
|
|
|
|
|
if not reorder_ops:
|
|
|
|
|
scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
|
|
|
|
|
else:
|
|
|
|
|
scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
|
|
|
|
|
if key_padding_mask is not None:
|
|
|
|
|
scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
|
|
|
|
|
if causal:
|
|
|
|
|
local_mask = construct_local_mask(
|
|
|
|
|
seqlen_q,
|
|
|
|
|
seqlen_k,
|
|
|
|
|
(-1, 0),
|
|
|
|
|
None,
|
|
|
|
|
None,
|
|
|
|
|
q.device,
|
|
|
|
|
)
|
|
|
|
|
scores.masked_fill_(local_mask, float("-inf"))
|
|
|
|
|
if attn_bias is not None:
|
|
|
|
|
scores = scores + attn_bias
|
|
|
|
|
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
|
|
|
|
# We want to mask here so that the attention matrix doesn't have any NaNs
|
|
|
|
|
# Otherwise we'll get NaN in dV
|
|
|
|
|
if query_padding_mask is not None:
|
|
|
|
|
attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
|
|
|
|
|
# Some rows might be completely masked out so we fill them with zero instead of NaN
|
|
|
|
|
if causal:
|
|
|
|
|
attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
|
|
|
|
|
dropout_scaling = 1.0 / (1 - dropout_p)
|
|
|
|
|
# attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
|
|
|
|
|
# output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
|
|
|
|
|
if dropout_mask is not None:
|
|
|
|
|
attention_drop = attention.masked_fill(~dropout_mask, 0.0)
|
|
|
|
|
else:
|
|
|
|
|
attention_drop = attention
|
|
|
|
|
output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
|
|
|
|
|
if query_padding_mask is not None:
|
|
|
|
|
output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
|
|
|
|
|
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2024-07-15 14:39:46 +08:00
|
|
|
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
|
|
|
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
|
|
|
|
|
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
|
|
|
|
|
# @pytest.mark.parametrize("mha_type", ["gqa"])
|
2024-07-12 00:53:36 +08:00
|
|
|
@pytest.mark.parametrize("causal", [False, True])
|
2024-07-15 14:39:46 +08:00
|
|
|
# @pytest.mark.parametrize("causal", [True])
|
2024-07-12 00:53:36 +08:00
|
|
|
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
|
|
|
|
|
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
|
|
|
|
|
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
|
|
|
|
|
# @pytest.mark.parametrize('d', [56, 80])
|
|
|
|
|
@pytest.mark.parametrize("d", [64, 128, 256])
|
2024-07-15 14:39:46 +08:00
|
|
|
# @pytest.mark.parametrize("d", [256])
|
2024-07-12 00:53:36 +08:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
|
"seqlen_q,seqlen_k",
|
|
|
|
|
[
|
|
|
|
|
(64, 128),
|
|
|
|
|
(128, 128),
|
|
|
|
|
(256, 256),
|
|
|
|
|
(113, 203),
|
|
|
|
|
(128, 217),
|
|
|
|
|
(113, 211),
|
|
|
|
|
(108, 256),
|
|
|
|
|
(256, 512),
|
2024-07-15 14:39:46 +08:00
|
|
|
(384, 256),
|
|
|
|
|
(640, 128),
|
2024-07-12 00:53:36 +08:00
|
|
|
(512, 256),
|
|
|
|
|
(1024, 1024),
|
|
|
|
|
(1023, 1024),
|
|
|
|
|
(1024, 1023),
|
|
|
|
|
(2048, 2048),
|
|
|
|
|
],
|
|
|
|
|
)
|
|
|
|
|
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
|
|
|
|
|
def test_flash_attn_output(
|
2024-07-15 14:39:46 +08:00
|
|
|
seqlen_q, seqlen_k, d, causal, mha_type, dtype
|
2024-07-12 00:53:36 +08:00
|
|
|
):
|
|
|
|
|
device = "cuda"
|
|
|
|
|
# set seed
|
|
|
|
|
torch.random.manual_seed(0)
|
|
|
|
|
# batch_size = 40
|
|
|
|
|
# nheads = 16
|
|
|
|
|
batch_size = 9
|
2024-07-15 14:39:46 +08:00
|
|
|
nheads = 6
|
|
|
|
|
nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
|
2024-07-12 00:53:36 +08:00
|
|
|
# batch_size = 1
|
|
|
|
|
# nheads = 1
|
|
|
|
|
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
|
2024-07-15 14:39:46 +08:00
|
|
|
k = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype, requires_grad=True)
|
|
|
|
|
v = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype, requires_grad=True)
|
2024-07-12 00:53:36 +08:00
|
|
|
out, lse = flash_attn_func(q, k, v, causal=causal)
|
|
|
|
|
out_ref, attn_ref = attention_ref(
|
|
|
|
|
q,
|
|
|
|
|
k,
|
|
|
|
|
v,
|
|
|
|
|
None,
|
|
|
|
|
None,
|
|
|
|
|
causal=causal,
|
|
|
|
|
)
|
|
|
|
|
out_pt, attn_pt = attention_ref(
|
|
|
|
|
q,
|
|
|
|
|
k,
|
|
|
|
|
v,
|
|
|
|
|
None,
|
|
|
|
|
None,
|
|
|
|
|
causal=causal,
|
|
|
|
|
upcast=False,
|
|
|
|
|
reorder_ops=True,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# qk = torch.einsum('bshd,bthd->bhst', q, k).float()
|
|
|
|
|
# m = qk.amax(-1, keepdim=True)
|
|
|
|
|
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
|
|
|
|
|
# exp_sum = s_tmp.sum(-1)
|
2024-07-15 14:39:46 +08:00
|
|
|
# qk = torch.einsum('bthd,bshd->bhts', q.float() / math.sqrt(d), k.float())
|
|
|
|
|
# lse_ref = torch.logsumexp(qk, dim=-1)
|
2024-07-12 00:53:36 +08:00
|
|
|
|
|
|
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
|
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
|
|
|
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
|
|
|
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
2024-07-15 14:39:46 +08:00
|
|
|
# if not causal:
|
|
|
|
|
# print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
|
2024-07-12 00:53:36 +08:00
|
|
|
# breakpoint()
|
|
|
|
|
|
|
|
|
|
# if d <= 128:
|
|
|
|
|
# g = torch.randn_like(out)
|
|
|
|
|
# do_o = (g.float() * out.float()).sum(-1)
|
|
|
|
|
# dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
|
|
|
|
|
# dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q, k, v), g)
|
|
|
|
|
# dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q, k, v), g)
|
|
|
|
|
# print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
|
|
|
|
|
# print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
|
|
|
|
|
# print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
|
|
|
|
|
# print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
|
|
|
|
|
# print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
|
|
|
|
|
# print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
|
|
|
|
|
# print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
|
|
|
|
|
# print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
|
|
|
|
|
# print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
|
|
|
|
|
# print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
|
|
|
|
|
# print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
|
|
|
|
|
# print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
|
|
|
|
|
|
|
|
|
|
# dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
|
|
|
|
|
# P = torch.softmax(qk, -1)
|
|
|
|
|
# dP = P * (dS - do_o.unsqueeze(1))
|
|
|
|
|
# dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
|
|
|
|
|
# dV = torch.einsum('bhts,bthd->bshd', P, g.float())
|
|
|
|
|
# dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
|
|
|
|
|
# breakpoint()
|
|
|
|
|
|
|
|
|
|
# Check that FlashAttention's numerical error is at most twice the numerical error
|
|
|
|
|
# of a Pytorch implementation.
|
|
|
|
|
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
|
|
|
|
|
|
|
|
|
|
# if d <= 128:
|
|
|
|
|
# assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
|
|
|
|
|
# assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
|
|
|
|
|
# assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
|