2023-01-16 14:14:31 +08:00
|
|
|
# Copyright (c) 2023, Tri Dao.
|
|
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
import re
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
from transformers import GPT2Config, OPTConfig
|
|
|
|
|
|
|
|
|
|
|
2023-03-23 07:16:58 +08:00
|
|
|
def remap_state_dict_hf_opt(state_dict, config):
|
2023-01-16 14:14:31 +08:00
|
|
|
def key_mapping_model(key):
|
|
|
|
|
key = re.sub(r'^model.decoder.', 'transformer.', key)
|
|
|
|
|
# The OPT-350m model uses '^decoder' instead of '^model.decoder'
|
|
|
|
|
key = re.sub(r'^decoder.', 'transformer.', key)
|
|
|
|
|
return key
|
|
|
|
|
state_dict = OrderedDict((key_mapping_model(k), v) for k, v in state_dict.items())
|
|
|
|
|
# Word embedding and position embedding
|
|
|
|
|
def key_mapping_emb(key):
|
|
|
|
|
key = re.sub(r'^transformer.embed_tokens.', 'transformer.embeddings.word_embeddings.', key)
|
|
|
|
|
# The OPT-350m model uses has project_in and project_out
|
|
|
|
|
key = re.sub(r'^transformer.project_in.', 'transformer.embeddings.project_in.', key)
|
|
|
|
|
key = re.sub(r'^transformer.project_out.', 'project_out.', key)
|
|
|
|
|
key = re.sub(r'^transformer.embed_positions.',
|
|
|
|
|
'transformer.embeddings.position_embeddings.', key)
|
|
|
|
|
return key
|
|
|
|
|
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
|
|
|
|
# OPT uses the first 2 indices of pos_emb for padding tokens
|
|
|
|
|
pos_embeddings = state_dict.pop('transformer.embeddings.position_embeddings.weight')
|
|
|
|
|
state_dict['transformer.embeddings.position_embeddings.weight'] = pos_embeddings[2:]
|
|
|
|
|
word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight')
|
|
|
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
|
|
|
|
pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
|
|
|
|
|
vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
|
|
|
|
state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
|
|
|
|
|
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
|
|
|
|
)
|
|
|
|
|
state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
|
|
|
|
|
|
|
|
|
|
# LayerNorm
|
|
|
|
|
def key_mapping_ln(key):
|
|
|
|
|
key = re.sub(r'^transformer.final_layer_norm.', r'transformer.ln_f.', key)
|
2023-01-23 09:01:32 +08:00
|
|
|
# The OPT-175B checkpoint calls this 'decoder.layer_norm' instead of 'decoder.final_layer_norm'
|
|
|
|
|
key = re.sub(r'^transformer.layer_norm.', r'transformer.ln_f.', key)
|
2023-01-16 14:14:31 +08:00
|
|
|
key = re.sub(r'^transformer.layers.(\d+).self_attn_layer_norm.',
|
|
|
|
|
r'transformer.layers.\1.norm1.', key)
|
|
|
|
|
key = re.sub(r'^transformer.layers.(\d+).final_layer_norm.',
|
|
|
|
|
r'transformer.layers.\1.norm2.', key)
|
|
|
|
|
return key
|
|
|
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
|
|
|
|
|
|
|
|
|
# MLP
|
|
|
|
|
def key_mapping_mlp(key):
|
|
|
|
|
return re.sub(r'^transformer.layers.(\d+).fc(1|2).',
|
|
|
|
|
r'transformer.layers.\1.mlp.fc\2.', key)
|
|
|
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
|
|
|
|
|
|
|
|
|
# Attention
|
|
|
|
|
for l in range(config.n_layer):
|
|
|
|
|
Wq = state_dict.pop(f'transformer.layers.{l}.self_attn.q_proj.weight')
|
|
|
|
|
Wk = state_dict.pop(f'transformer.layers.{l}.self_attn.k_proj.weight')
|
|
|
|
|
Wv = state_dict.pop(f'transformer.layers.{l}.self_attn.v_proj.weight')
|
|
|
|
|
bq = state_dict.pop(f'transformer.layers.{l}.self_attn.q_proj.bias')
|
|
|
|
|
bk = state_dict.pop(f'transformer.layers.{l}.self_attn.k_proj.bias')
|
|
|
|
|
bv = state_dict.pop(f'transformer.layers.{l}.self_attn.v_proj.bias')
|
2023-04-19 12:43:37 +08:00
|
|
|
state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = torch.cat([Wq, Wk, Wv], dim=0)
|
|
|
|
|
state_dict[f'transformer.layers.{l}.mixer.Wqkv.bias'] = torch.cat([bq, bk, bv], dim=0)
|
2023-01-16 14:14:31 +08:00
|
|
|
def key_mapping_attn(key):
|
|
|
|
|
return re.sub(r'^transformer.layers.(\d+).self_attn.out_proj.',
|
|
|
|
|
r'transformer.layers.\1.mixer.out_proj.', key)
|
|
|
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
|
|
|
|
|
|
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def opt_config_to_gpt2_config(opt_config: OPTConfig) -> GPT2Config:
|
|
|
|
|
assert opt_config.layerdrop == 0.0
|
|
|
|
|
assert opt_config.layer_norm_elementwise_affine
|
|
|
|
|
word_embed_proj_dim = (None if opt_config.word_embed_proj_dim == opt_config.hidden_size
|
|
|
|
|
else opt_config.word_embed_proj_dim)
|
|
|
|
|
return GPT2Config(
|
|
|
|
|
vocab_size=opt_config.vocab_size,
|
|
|
|
|
n_positions=opt_config.max_position_embeddings,
|
|
|
|
|
n_embd=opt_config.hidden_size,
|
|
|
|
|
n_layer=opt_config.num_hidden_layers,
|
|
|
|
|
n_head=opt_config.num_attention_heads,
|
|
|
|
|
n_inner=opt_config.ffn_dim,
|
|
|
|
|
activation_function=opt_config.activation_function,
|
|
|
|
|
resid_pdrop=opt_config.dropout,
|
|
|
|
|
# HF's implementation of OPT doesn't seem to have embedding dropout
|
|
|
|
|
embd_pdrop=opt_config.dropout,
|
|
|
|
|
attn_pdrop=opt_config.attention_dropout,
|
|
|
|
|
initializer_range=opt_config.init_std,
|
|
|
|
|
bos_token_id=opt_config.bos_token_id,
|
|
|
|
|
eos_token_id=opt_config.eos_token_id,
|
|
|
|
|
# These are new arguments not in the original GPT2Config
|
|
|
|
|
prenorm=opt_config.do_layer_norm_before,
|
|
|
|
|
word_embed_proj_dim=word_embed_proj_dim
|
|
|
|
|
)
|