85 lines
3.4 KiB
Python
85 lines
3.4 KiB
Python
|
|
# Run test with:
|
||
|
|
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py
|
||
|
|
|
||
|
|
import torch
|
||
|
|
import torch.nn as nn
|
||
|
|
import torch.nn.functional as F
|
||
|
|
import pytest
|
||
|
|
|
||
|
|
from einops import rearrange
|
||
|
|
|
||
|
|
from apex.transformer import parallel_state
|
||
|
|
|
||
|
|
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
|
||
|
|
|
||
|
|
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
|
||
|
|
|
||
|
|
|
||
|
|
@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
|
||
|
|
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
|
||
|
|
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
|
||
|
|
# @pytest.mark.parametrize('world_size', [2])
|
||
|
|
@pytest.mark.parametrize('has_pos_emb', [True, False])
|
||
|
|
# @pytest.mark.parametrize('has_pos_emb', [True])
|
||
|
|
@pytest.mark.parametrize('dim', [1024])
|
||
|
|
def test_embedding_parallel(dim, world_size, has_pos_emb, dtype):
|
||
|
|
vocab_size = 50264
|
||
|
|
seqlen = 2048
|
||
|
|
assert vocab_size % world_size == 0
|
||
|
|
assert dim % world_size == 0
|
||
|
|
rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
|
||
|
|
if not torch.distributed.is_initialized():
|
||
|
|
torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
||
|
|
device = f'cuda:{torch.distributed.get_rank()}'
|
||
|
|
assert world_size <= torch.distributed.get_world_size()
|
||
|
|
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
||
|
|
rank = parallel_state.get_tensor_model_parallel_rank()
|
||
|
|
# set seed
|
||
|
|
torch.random.manual_seed(0)
|
||
|
|
batch_size = 8
|
||
|
|
seqlen = 1024
|
||
|
|
assert (batch_size * seqlen) % world_size == 0
|
||
|
|
input_ids_pt = torch.randint(0, vocab_size, (batch_size, seqlen), device=device)
|
||
|
|
input_ids = input_ids_pt.detach().clone()
|
||
|
|
|
||
|
|
model_pt = GPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0,
|
||
|
|
device=device, dtype=dtype)
|
||
|
|
model = ParallelGPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0,
|
||
|
|
parallel_state.get_tensor_model_parallel_group(),
|
||
|
|
device=device, dtype=dtype)
|
||
|
|
partition_vocab_size = vocab_size // world_size
|
||
|
|
partition_dim = dim // world_size
|
||
|
|
with torch.no_grad():
|
||
|
|
model.word_embeddings.weight.copy_(
|
||
|
|
model_pt.word_embeddings.weight[rank * partition_vocab_size:(rank + 1) * partition_vocab_size]
|
||
|
|
)
|
||
|
|
if has_pos_emb:
|
||
|
|
model.position_embeddings.weight.copy_(
|
||
|
|
model_pt.position_embeddings.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
|
||
|
|
)
|
||
|
|
|
||
|
|
out = model(input_ids, combine_batch_seqlen_dim=True)
|
||
|
|
out_pt = rearrange(model_pt(input_ids), 'b s d -> (b s) d')
|
||
|
|
partition_batch_dim = batch_size * seqlen // world_size
|
||
|
|
assert torch.allclose(
|
||
|
|
out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
||
|
|
rtol=rtol, atol=atol
|
||
|
|
)
|
||
|
|
|
||
|
|
g = torch.randn_like(out_pt)
|
||
|
|
out_pt.backward(g)
|
||
|
|
out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim])
|
||
|
|
parallel_state.destroy_model_parallel()
|
||
|
|
|
||
|
|
assert torch.allclose(
|
||
|
|
model.word_embeddings.weight.grad,
|
||
|
|
model_pt.word_embeddings.weight.grad[rank * partition_vocab_size:(rank + 1) * partition_vocab_size],
|
||
|
|
rtol=rtol, atol=atol
|
||
|
|
)
|
||
|
|
if has_pos_emb:
|
||
|
|
assert torch.allclose(
|
||
|
|
model.position_embeddings.weight.grad,
|
||
|
|
model_pt.position_embeddings.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
|
||
|
|
rtol=rtol, atol=atol
|
||
|
|
)
|