2024-07-12 00:53:36 +08:00
/******************************************************************************
* Copyright ( c ) 2024 , Jay Shah , Ganesh Bikshandi , Ying Zhang , Vijay Thakkar , Pradeep Ramani , Tri Dao .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
# include <torch/python.h>
# include <torch/nn/functional.h>
# include <ATen/cuda/CUDAContext.h>
# include <c10/cuda/CUDAGuard.h>
# include <cutlass/numeric_types.h>
# include "flash.h"
# include "static_switch.h"
# define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
# define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
# define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
void set_params_fprop ( Flash_fwd_params & params ,
// sizes
const size_t b ,
const size_t seqlen_q ,
const size_t seqlen_k ,
const size_t seqlen_q_rounded ,
const size_t seqlen_k_rounded ,
const size_t h ,
const size_t h_k ,
const size_t d ,
const size_t d_rounded ,
// device pointers
const at : : Tensor q ,
const at : : Tensor k ,
const at : : Tensor v ,
at : : Tensor out ,
void * cu_seqlens_q_d ,
void * cu_seqlens_k_d ,
void * seqused_k ,
void * p_d ,
void * softmax_lse_d ,
float p_dropout ,
float softmax_scale ,
int window_size_left ,
int window_size_right ,
2024-07-23 12:32:41 +08:00
bool seqlenq_ngroups_swapped = false ,
bool unpadded_lse = false ) {
2024-07-12 00:53:36 +08:00
// Reset the parameters
params = { } ;
params . is_bf16 = q . dtype ( ) = = torch : : kBFloat16 ;
params . is_e4m3 = q . dtype ( ) = = torch : : kFloat8_e4m3fn ;
// Set the pointers and strides.
params . q_ptr = q . data_ptr ( ) ;
params . k_ptr = k . data_ptr ( ) ;
params . v_ptr = v . data_ptr ( ) ;
// All stride are in elements, not bytes.
params . q_row_stride = q . stride ( - 3 ) ;
params . k_row_stride = k . stride ( - 3 ) ;
params . v_row_stride = v . stride ( - 3 ) ;
params . q_head_stride = q . stride ( - 2 ) ;
params . k_head_stride = k . stride ( - 2 ) ;
params . v_head_stride = v . stride ( - 2 ) ;
params . o_ptr = out . data_ptr ( ) ;
params . o_row_stride = out . stride ( - 3 ) ;
params . o_head_stride = out . stride ( - 2 ) ;
if ( cu_seqlens_q_d = = nullptr ) {
params . q_batch_stride = q . stride ( 0 ) ;
params . k_batch_stride = k . stride ( 0 ) ;
params . v_batch_stride = v . stride ( 0 ) ;
params . o_batch_stride = out . stride ( 0 ) ;
if ( seqlenq_ngroups_swapped ) {
params . q_batch_stride * = seqlen_q ;
params . o_batch_stride * = seqlen_q ;
}
}
params . cu_seqlens_q = static_cast < int * > ( cu_seqlens_q_d ) ;
params . cu_seqlens_k = static_cast < int * > ( cu_seqlens_k_d ) ;
params . seqused_k = static_cast < int * > ( seqused_k ) ;
2024-07-23 12:32:41 +08:00
TORCH_CHECK (
bool ( params . cu_seqlens_q ) = = bool ( params . cu_seqlens_k ) ,
" cu_seqlens_q and cu_seqlens_k must be both null or non-null "
) ;
2024-07-12 00:53:36 +08:00
// P = softmax(QK^T)
params . p_ptr = p_d ;
// Softmax sum
params . softmax_lse_ptr = softmax_lse_d ;
// Set the dimensions.
params . b = b ;
params . h = h ;
params . h_k = h_k ;
params . h_h_k_ratio = h / h_k ;
params . seqlen_q = seqlen_q ;
params . seqlen_k = seqlen_k ;
params . seqlen_q_rounded = seqlen_q_rounded ;
params . seqlen_k_rounded = seqlen_k_rounded ;
params . d = d ;
params . d_rounded = d_rounded ;
// Set the different scale values.
params . scale_softmax = softmax_scale ;
params . scale_softmax_log2 = softmax_scale * M_LOG2E ;
__half scale_softmax_log2_half = __float2half ( params . scale_softmax_log2 ) ;
__half2 scale_softmax_log2_half2 = __half2 ( scale_softmax_log2_half , scale_softmax_log2_half ) ;
params . scale_softmax_log2_half2 = reinterpret_cast < uint32_t & > ( scale_softmax_log2_half2 ) ;
// Set this to probability of keeping an element to simplify things.
params . p_dropout = 1.f - p_dropout ;
// Convert p from float to int so we don't have to convert the random uint to float to compare.
// [Minor] We want to round down since when we do the comparison we use <= instead of <
// params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
// params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
params . p_dropout_in_uint8_t = uint8_t ( std : : floor ( params . p_dropout * 255.0 ) ) ;
params . rp_dropout = 1.f / params . p_dropout ;
params . scale_softmax_rp_dropout = params . rp_dropout * params . scale_softmax ;
TORCH_CHECK ( p_dropout < 1.f ) ;
# ifdef FLASHATTENTION_DISABLE_DROPOUT
TORCH_CHECK ( p_dropout = = 0.0f , " This flash attention build does not support dropout. " ) ;
# endif
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
params . is_causal = window_size_left < 0 & & window_size_right = = 0 ;
if ( window_size_left < 0 & & window_size_right > = 0 ) { window_size_left = seqlen_k ; }
if ( window_size_left > = 0 & & window_size_right < 0 ) { window_size_right = seqlen_k ; }
params . window_size_left = window_size_left ;
params . window_size_right = window_size_right ;
# ifdef FLASHATTENTION_DISABLE_LOCAL
TORCH_CHECK ( params . is_causal | | ( window_size_left < 0 & & window_size_right < 0 ) ,
" This flash attention build does not support local attention. " ) ;
# endif
params . is_seqlens_k_cumulative = true ;
# ifdef FLASHATTENTION_DISABLE_UNEVEN_K
TORCH_CHECK ( d = = d_rounded , " This flash attention build does not support headdim not being a multiple of 32. " ) ;
# endif
2024-07-23 12:32:41 +08:00
params . unpadded_lse = unpadded_lse ;
2024-07-12 00:53:36 +08:00
}
void set_params_dgrad ( Flash_bwd_params & params ,
// sizes
const size_t b ,
const size_t seqlen_q ,
const size_t seqlen_k ,
const size_t seqlen_q_rounded ,
const size_t seqlen_k_rounded ,
const size_t h ,
const size_t h_k ,
const size_t d ,
const size_t d_rounded ,
// device pointers
const at : : Tensor q ,
const at : : Tensor k ,
const at : : Tensor v ,
const at : : Tensor out ,
const at : : Tensor dout ,
at : : Tensor dq ,
at : : Tensor dk ,
at : : Tensor dv ,
void * cu_seqlens_q_d ,
void * cu_seqlens_k_d ,
void * dq_accum_d ,
void * dk_accum_d ,
void * dv_accum_d ,
void * softmax_lse_d ,
void * dsoftmax_sum_d ,
float p_dropout ,
float softmax_scale ,
int window_size_left ,
int window_size_right ,
bool deterministic ) {
set_params_fprop ( params ,
b , seqlen_q , seqlen_k , seqlen_q_rounded , seqlen_k_rounded , h , h_k , d , d_rounded ,
q , k , v , out ,
cu_seqlens_q_d ,
cu_seqlens_k_d ,
nullptr ,
nullptr ,
softmax_lse_d ,
p_dropout ,
softmax_scale ,
window_size_left ,
window_size_right ) ;
// Set the pointers and strides.
params . do_ptr = dout . data_ptr ( ) ;
params . do_row_stride = dout . stride ( - 3 ) ;
params . do_head_stride = dout . stride ( - 2 ) ;
params . dq_ptr = dq . data_ptr ( ) ;
params . dk_ptr = dk . data_ptr ( ) ;
params . dv_ptr = dv . data_ptr ( ) ;
params . dq_row_stride = dq . stride ( - 3 ) ;
params . dk_row_stride = dk . stride ( - 3 ) ;
params . dv_row_stride = dv . stride ( - 3 ) ;
params . dq_head_stride = dq . stride ( - 2 ) ;
params . dk_head_stride = dk . stride ( - 2 ) ;
params . dv_head_stride = dv . stride ( - 2 ) ;
if ( cu_seqlens_q_d = = nullptr ) {
params . do_batch_stride = dout . stride ( 0 ) ;
params . dq_batch_stride = dq . stride ( 0 ) ;
params . dk_batch_stride = dk . stride ( 0 ) ;
params . dv_batch_stride = dv . stride ( 0 ) ;
}
params . dq_accum_ptr = dq_accum_d ;
params . dk_accum_ptr = dk_accum_d ;
params . dv_accum_ptr = dv_accum_d ;
// Softmax sum
params . dsoftmax_sum = dsoftmax_sum_d ;
params . deterministic = deterministic ;
}
void run_mha_fwd ( Flash_fwd_params & params , cudaStream_t stream , bool force_split_kernel = false ) {
// HEADDIM_SWITCH(params.d, [&] {
// run_mha_fwd_<cutlass::half_t, kHeadSize>(params, stream);
// });
if ( ! params . is_e4m3 ) {
2024-07-15 14:39:46 +08:00
if ( params . is_bf16 ) {
if ( params . d = = 64 ) {
run_mha_fwd_ < cutlass : : bfloat16_t , 64 > ( params , stream ) ;
} else if ( params . d = = 128 ) {
run_mha_fwd_ < cutlass : : bfloat16_t , 128 > ( params , stream ) ;
} else {
run_mha_fwd_ < cutlass : : bfloat16_t , 256 > ( params , stream ) ;
}
2024-07-12 00:53:36 +08:00
} else {
2024-07-15 14:39:46 +08:00
if ( params . d = = 64 ) {
run_mha_fwd_ < cutlass : : half_t , 64 > ( params , stream ) ;
} else if ( params . d = = 128 ) {
run_mha_fwd_ < cutlass : : half_t , 128 > ( params , stream ) ;
} else {
run_mha_fwd_ < cutlass : : half_t , 256 > ( params , stream ) ;
}
2024-07-12 00:53:36 +08:00
}
} else {
2024-07-31 05:14:14 +08:00
if ( params . d = = 64 ) {
run_mha_fwd_ < cutlass : : float_e4m3_t , 64 > ( params , stream ) ;
} else if ( params . d = = 128 ) {
run_mha_fwd_ < cutlass : : float_e4m3_t , 128 > ( params , stream ) ;
} else if ( params . d = = 256 ) {
run_mha_fwd_ < cutlass : : float_e4m3_t , 256 > ( params , stream ) ;
}
2024-07-12 00:53:36 +08:00
}
}
std : : vector < at : : Tensor >
mha_fwd ( at : : Tensor & q , // batch_size x seqlen_q x num_heads x head_size
const at : : Tensor & k , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & v , // batch_size x seqlen_k x num_heads_k x head_size
c10 : : optional < at : : Tensor > & out_ , // batch_size x seqlen_q x num_heads x head_size
const float softmax_scale ,
bool is_causal ) {
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
bool is_sm90 = dprops - > major = = 9 & & dprops - > minor = = 0 ;
TORCH_CHECK ( is_sm90 , " FlashAttention only supports Hopper GPUs or newer. " ) ;
auto q_dtype = q . dtype ( ) ;
2024-07-31 05:14:14 +08:00
// TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
// "FlashAttention only support fp16 and bf16 data type for now");
2024-07-25 16:28:44 +08:00
// TODO: will add e4m3 later
// TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kFloat8_e4m3fn,
2024-07-31 05:14:14 +08:00
// "FlashAttention only support fp16 and bf16 data type");
// "FlashAttention only support fp16 and fp8 (e4m3) data type for now");
2024-07-12 00:53:36 +08:00
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
const auto sizes = q . sizes ( ) ;
const int batch_size = sizes [ 0 ] ;
int seqlen_q = sizes [ 1 ] ;
int num_heads = sizes [ 2 ] ;
const int head_size_og = sizes [ 3 ] ;
const int seqlen_k = k . size ( 1 ) ;
const int num_heads_k = k . size ( 2 ) ;
2024-07-15 14:39:46 +08:00
TORCH_CHECK ( batch_size > 0 , " batch size must be positive " ) ;
2024-07-12 00:53:36 +08:00
TORCH_CHECK ( head_size_og < = 256 , " FlashAttention forward only supports head dimension at most 256 " ) ;
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
TORCH_CHECK ( head_size_og = = 64 | | head_size_og = = 128 | | head_size_og = = 256 , " Only support head size 64, 128, and 256 for now " ) ;
CHECK_SHAPE ( q , batch_size , seqlen_q , num_heads , head_size_og ) ;
CHECK_SHAPE ( k , batch_size , seqlen_k , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( v , batch_size , seqlen_k , num_heads_k , head_size_og ) ;
at : : Tensor q_padded , k_padded , v_padded ;
2024-07-25 16:28:44 +08:00
if ( head_size_og % 8 ! = 0 ) {
2024-07-12 00:53:36 +08:00
q_padded = torch : : nn : : functional : : pad ( q , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
k_padded = torch : : nn : : functional : : pad ( k , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
v_padded = torch : : nn : : functional : : pad ( v , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
2024-07-25 16:28:44 +08:00
} else {
2024-07-12 00:53:36 +08:00
q_padded = q ;
k_padded = k ;
v_padded = v ;
}
at : : Tensor out ;
if ( out_ . has_value ( ) ) {
out = out_ . value ( ) ;
2024-07-31 05:14:14 +08:00
// TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
TORCH_CHECK ( q_dtype = = at : : ScalarType : : Float8_e4m3fn
? ( out . dtype ( ) = = at : : kHalf )
: ( out . dtype ( ) = = q_dtype ) ,
" Output must have the same dtype as input dtype if dtype is "
" not fp8, or fp16 for fp8 input. " ) ;
2024-07-12 00:53:36 +08:00
CHECK_DEVICE ( out ) ;
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " Output tensor must have contiguous last dimension " ) ;
CHECK_SHAPE ( out , batch_size , seqlen_q , num_heads , head_size_og ) ;
if ( head_size_og % 8 ! = 0 ) { out = torch : : empty_like ( q_padded ) ; }
} else {
2024-07-31 05:14:14 +08:00
if ( q_dtype = = at : : ScalarType : : Float8_e4m3fn )
out = torch : : empty_like ( q_padded , at : : kHalf ) ;
else
out = torch : : empty_like ( q_padded ) ;
2024-07-12 00:53:36 +08:00
}
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
const int head_size = round_multiple ( head_size_og , 8 ) ;
const int head_size_rounded = round_multiple ( head_size , 32 ) ;
const int seqlen_q_rounded = round_multiple ( seqlen_q , 128 ) ;
const int seqlen_k_rounded = round_multiple ( seqlen_k , 128 ) ;
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
auto softmax_lse = torch : : empty ( { batch_size , num_heads , seqlen_q } , opts . dtype ( at : : kFloat ) ) ;
at : : Tensor p ;
Flash_fwd_params params ;
set_params_fprop ( params ,
batch_size ,
seqlen_q , seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q_padded , k_padded , v_padded , out ,
/*cu_seqlens_q_d=*/ nullptr ,
/*cu_seqlens_k_d=*/ nullptr ,
/*seqused_k=*/ nullptr ,
nullptr ,
softmax_lse . data_ptr ( ) ,
/*p_dropout=*/ 0.f ,
softmax_scale ,
/*window_size_left=*/ - 1 ,
/*window_size_right=*/ is_causal ? 0 : - 1 ) ;
2024-07-15 14:39:46 +08:00
auto tile_count_semaphore = is_causal ? torch : : zeros ( { 1 } , opts . dtype ( torch : : kInt32 ) ) : torch : : empty ( { 1 } , opts . dtype ( torch : : kInt32 ) ) ;
2024-07-12 00:53:36 +08:00
params . tile_count_semaphore = tile_count_semaphore . data_ptr < int > ( ) ;
if ( seqlen_k > 0 ) {
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
run_mha_fwd ( params , stream ) ;
} else {
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
out . zero_ ( ) ;
softmax_lse . fill_ ( std : : numeric_limits < float > : : infinity ( ) ) ;
}
at : : Tensor out_padded = out ;
if ( head_size_og % 8 ! = 0 ) {
out = out . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
if ( out_ . has_value ( ) ) { out_ . value ( ) . copy_ ( out ) ; }
}
return { out , q_padded , k_padded , v_padded , out_padded , softmax_lse , p } ;
}
2024-07-23 12:32:41 +08:00
std : : vector < at : : Tensor >
mha_varlen_fwd ( at : : Tensor & q , // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
const at : : Tensor & k , // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
const at : : Tensor & v , // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
c10 : : optional < at : : Tensor > & out_ , // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
const at : : Tensor & cu_seqlens_q , // b+1
const at : : Tensor & cu_seqlens_k , // b+1
c10 : : optional < at : : Tensor > & seqused_k , // b. If given, only this many elements of each batch element's keys are used.
int max_seqlen_q ,
const int max_seqlen_k ,
const float softmax_scale ,
bool is_causal ) {
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
bool is_sm90 = dprops - > major = = 9 & & dprops - > minor = = 0 ;
TORCH_CHECK ( is_sm90 , " FlashAttention only supports Hopper GPUs or newer. " ) ;
auto q_dtype = q . dtype ( ) ;
TORCH_CHECK ( q_dtype = = torch : : kFloat16 | | q_dtype = = torch : : kBFloat16 ,
" FlashAttention only support fp16 and bf16 data type " ) ;
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
TORCH_CHECK ( cu_seqlens_q . dtype ( ) = = torch : : kInt32 , " cu_seqlens_q must have dtype int32 " ) ;
TORCH_CHECK ( cu_seqlens_k . dtype ( ) = = torch : : kInt32 , " cu_seqlens_k must have dtype int32 " ) ;
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
CHECK_DEVICE ( cu_seqlens_q ) ;
CHECK_DEVICE ( cu_seqlens_k ) ;
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
CHECK_CONTIGUOUS ( cu_seqlens_q ) ;
CHECK_CONTIGUOUS ( cu_seqlens_k ) ;
const auto sizes = q . sizes ( ) ;
const int batch_size = cu_seqlens_q . numel ( ) - 1 ;
int num_heads = sizes [ 1 ] ;
const int head_size_og = sizes [ 2 ] ;
const int num_heads_k = k . size ( 1 ) ;
int window_size_left = - 1 ;
int window_size_right = - 1 ;
if ( is_causal ) { window_size_right = 0 ; }
void * cu_seqlens_q_d = cu_seqlens_q . data_ptr ( ) ;
const int total_q = q . sizes ( ) [ 0 ] ;
TORCH_CHECK ( batch_size > 0 , " batch size must be positive " ) ;
TORCH_CHECK ( head_size_og < = 256 , " FlashAttention forward only supports head dimension at most 256 " ) ;
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
if ( window_size_left > = max_seqlen_k ) { window_size_left = - 1 ; }
if ( window_size_right > = max_seqlen_k ) { window_size_right = - 1 ; }
CHECK_SHAPE ( q , total_q , num_heads , head_size_og ) ;
const int total_k = k . size ( 0 ) ;
CHECK_SHAPE ( k , total_k , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( v , total_k , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( cu_seqlens_q , batch_size + 1 ) ;
CHECK_SHAPE ( cu_seqlens_k , batch_size + 1 ) ;
if ( seqused_k . has_value ( ) ) {
auto seqused_k_ = seqused_k . value ( ) ;
TORCH_CHECK ( seqused_k_ . dtype ( ) = = torch : : kInt32 , " seqused_k must have dtype int32 " ) ;
TORCH_CHECK ( seqused_k_ . is_cuda ( ) , " seqused_k must be on CUDA device " ) ;
TORCH_CHECK ( seqused_k_ . is_contiguous ( ) , " seqused_k must be contiguous " ) ;
CHECK_SHAPE ( seqused_k_ , batch_size ) ;
}
at : : Tensor q_padded , k_padded , v_padded ;
if ( head_size_og % 8 ! = 0 ) {
q_padded = torch : : nn : : functional : : pad ( q , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
k_padded = torch : : nn : : functional : : pad ( k , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
v_padded = torch : : nn : : functional : : pad ( v , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
q_padded = q ;
k_padded = k ;
v_padded = v ;
}
at : : Tensor out ;
if ( out_ . has_value ( ) ) {
out = out_ . value ( ) ;
TORCH_CHECK ( out . dtype ( ) = = q_dtype , " Output must have the same dtype as inputs " ) ;
CHECK_DEVICE ( out ) ;
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " Output tensor must have contiguous last dimension " ) ;
CHECK_SHAPE ( out , sizes [ 0 ] , sizes [ 1 ] , head_size_og ) ;
if ( head_size_og % 8 ! = 0 ) { out = torch : : empty_like ( q_padded ) ; }
} else {
out = torch : : empty_like ( q_padded ) ;
}
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
const int head_size = round_multiple ( head_size_og , 8 ) ;
const int head_size_rounded = round_multiple ( head_size , 32 ) ;
const int seqlen_q_rounded = round_multiple ( max_seqlen_q , 128 ) ;
const int seqlen_k_rounded = round_multiple ( max_seqlen_k , 128 ) ;
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
auto softmax_lse = torch : : empty ( { num_heads , total_q } , opts . dtype ( at : : kFloat ) ) ;
Flash_fwd_params params ;
set_params_fprop ( params ,
batch_size ,
max_seqlen_q , max_seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q_padded , k_padded , v_padded , out ,
cu_seqlens_q_d ,
cu_seqlens_k . data_ptr ( ) ,
seqused_k . has_value ( ) ? seqused_k . value ( ) . data_ptr ( ) : nullptr ,
/*p_d=*/ nullptr ,
softmax_lse . data_ptr ( ) ,
/*p_dropout=*/ 0.f ,
softmax_scale ,
window_size_left ,
window_size_right ,
/*seqlenq_ngroups_swapped=*/ false ,
/*unpadded_lse=*/ true ) ;
params . total_q = total_q ;
params . total_k = total_k ;
if ( max_seqlen_k > 0 ) {
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
run_mha_fwd ( params , stream ) ;
} else {
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
out . zero_ ( ) ;
softmax_lse . fill_ ( std : : numeric_limits < float > : : infinity ( ) ) ;
}
at : : Tensor out_padded = out ;
if ( head_size_og % 8 ! = 0 ) {
out = out . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
if ( out_ . has_value ( ) ) { out_ . value ( ) . copy_ ( out ) ; }
}
return { out , q_padded , k_padded , v_padded , out_padded , softmax_lse } ;
}
2024-07-12 00:53:36 +08:00
void run_mha_bwd ( Flash_bwd_params & params , cudaStream_t stream ) {
2024-08-01 16:57:06 +08:00
// FP16_SWITCH(!params.is_bf16, [&] {
// HEADDIM_SWITCH(params.d, [&] {
// run_mha_bwd_<elem_type, kHeadDim>(params, stream);
// });
// });
if ( ! params . is_bf16 ) {
if ( params . d < = 64 ) {
run_mha_bwd_ < cutlass : : half_t , 64 > ( params , stream ) ;
} else if ( params . d < = 96 ) {
run_mha_bwd_ < cutlass : : half_t , 96 > ( params , stream ) ;
} else {
run_mha_bwd_ < cutlass : : half_t , 128 > ( params , stream ) ;
}
} else {
if ( params . d < = 64 ) {
run_mha_bwd_ < cutlass : : bfloat16_t , 64 > ( params , stream ) ;
} else if ( params . d < = 96 ) {
run_mha_bwd_ < cutlass : : bfloat16_t , 96 > ( params , stream ) ;
} else {
run_mha_bwd_ < cutlass : : bfloat16_t , 128 > ( params , stream ) ;
}
}
2024-07-12 00:53:36 +08:00
}
std : : vector < at : : Tensor >
mha_bwd ( const at : : Tensor & dout , // batch_size x seqlen_q x num_heads, x head_size_og
const at : : Tensor & q , // batch_size x seqlen_q x num_heads x head_size
const at : : Tensor & k , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & v , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & out , // batch_size x seqlen_q x num_heads x head_size
const at : : Tensor & softmax_lse , // b x h x seqlen_q
c10 : : optional < at : : Tensor > & dq_ , // batch_size x seqlen_q x num_heads x head_size
c10 : : optional < at : : Tensor > & dk_ , // batch_size x seqlen_k x num_heads_k x head_size
c10 : : optional < at : : Tensor > & dv_ , // batch_size x seqlen_k x num_heads_k x head_size
const float softmax_scale ,
2024-08-01 16:57:06 +08:00
const bool is_causal ,
const bool deterministic ) {
2024-07-12 00:53:36 +08:00
# ifdef FLASHATTENTION_DISABLE_BACKWARD
TORCH_CHECK ( false , " This flash attention build does not support backward. " ) ;
# endif
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
bool is_sm9x = dprops - > major = = 9 & & dprops - > minor > = 0 ;
TORCH_CHECK ( is_sm9x , " FlashAttentionHopper only supports Hopper GPUs or newer. " ) ;
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
auto q_dtype = q . dtype ( ) ;
2024-08-01 16:57:06 +08:00
TORCH_CHECK ( q_dtype = = torch : : kFloat16 | | q_dtype = = torch : : kBFloat16 ,
" FlashAttention only support fp16 and bf16 data type " ) ;
2024-07-12 00:53:36 +08:00
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
TORCH_CHECK ( out . dtype ( ) = = q_dtype , " query and out must have the same dtype " ) ;
TORCH_CHECK ( dout . dtype ( ) = = q_dtype , " query and dout must have the same dtype " ) ;
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
CHECK_DEVICE ( out ) ; CHECK_DEVICE ( dout ) ; CHECK_DEVICE ( softmax_lse ) ;
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " out tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( dout . stride ( - 1 ) = = 1 , " dout tensor must have contiguous last dimension " ) ;
const auto sizes = q . sizes ( ) ;
const int batch_size = sizes [ 0 ] ;
const int seqlen_q = sizes [ 1 ] ;
const int num_heads = sizes [ 2 ] ;
const int head_size_og = dout . size ( 3 ) ;
const int head_size = sizes [ 3 ] ;
const int seqlen_k = k . size ( 1 ) ;
const int num_heads_k = k . size ( 2 ) ;
TORCH_CHECK ( batch_size > 0 , " batch size must be positive " ) ;
TORCH_CHECK ( head_size % 8 = = 0 , " head_size should be a multiple of 8 " ) ;
2024-08-01 16:57:06 +08:00
TORCH_CHECK ( head_size < = 128 , " FlashAttention backward only supports head dimension at most 128 " ) ;
2024-07-12 00:53:36 +08:00
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
2024-08-01 16:57:06 +08:00
const int head_size_rounded = head_size < = 64 ? 64 : round_multiple ( head_size , 32 ) ;
// This should match the kernel configs
const int kBlockM = head_size < = 64 ? 128 : ( head_size < 256 ? 64 : 32 ) ;
const int seqlen_q_rounded = round_multiple ( seqlen_q , kBlockM ) ;
2024-07-12 00:53:36 +08:00
const int seqlen_k_rounded = round_multiple ( seqlen_k , 128 ) ;
TORCH_CHECK ( head_size = = round_multiple ( head_size_og , 8 ) , " head_size must be head_size_og rounded to a multiple of 8 " ) ;
CHECK_SHAPE ( q , batch_size , seqlen_q , num_heads , head_size ) ;
CHECK_SHAPE ( k , batch_size , seqlen_k , num_heads_k , head_size ) ;
CHECK_SHAPE ( v , batch_size , seqlen_k , num_heads_k , head_size ) ;
CHECK_SHAPE ( out , batch_size , seqlen_q , num_heads , head_size ) ;
CHECK_SHAPE ( dout , batch_size , seqlen_q , num_heads , head_size_og ) ;
at : : Tensor dq , dk , dv ;
if ( dq_ . has_value ( ) ) {
dq = dq_ . value ( ) ;
TORCH_CHECK ( dq . dtype ( ) = = q_dtype , " dq must have the same dtype as q " ) ;
CHECK_DEVICE ( dq ) ;
TORCH_CHECK ( dq . stride ( - 1 ) = = 1 , " dq must have contiguous last dimension " ) ;
CHECK_SHAPE ( dq , batch_size , seqlen_q , num_heads , head_size ) ;
} else {
dq = torch : : empty_like ( q ) ;
}
if ( dk_ . has_value ( ) ) {
dk = dk_ . value ( ) ;
TORCH_CHECK ( dk . dtype ( ) = = q_dtype , " dk must have the same dtype as q " ) ;
CHECK_DEVICE ( dk ) ;
TORCH_CHECK ( dk . stride ( - 1 ) = = 1 , " dk must have contiguous last dimension " ) ;
CHECK_SHAPE ( dk , batch_size , seqlen_k , num_heads_k , head_size ) ;
} else {
dk = torch : : empty_like ( k ) ;
}
if ( dv_ . has_value ( ) ) {
dv = dv_ . value ( ) ;
TORCH_CHECK ( dv . dtype ( ) = = q_dtype , " dv must have the same dtype as q " ) ;
CHECK_DEVICE ( dv ) ;
TORCH_CHECK ( dv . stride ( - 1 ) = = 1 , " dv must have contiguous last dimension " ) ;
CHECK_SHAPE ( dv , batch_size , seqlen_k , num_heads_k , head_size ) ;
} else {
dv = torch : : empty_like ( v ) ;
}
at : : Tensor dout_padded ;
if ( head_size_og % 8 ! = 0 ) {
dout_padded = torch : : nn : : functional : : pad ( dout , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
dout_padded = dout ;
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
2024-08-01 16:57:06 +08:00
// Need softmax_d to have seqlen_q_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
2024-07-12 00:53:36 +08:00
auto softmax_d = torch : : empty ( { batch_size , num_heads , seqlen_q_rounded } , opts . dtype ( at : : kFloat ) ) ;
2024-08-01 16:57:06 +08:00
auto softmax_lse_log2 = torch : : empty ( { batch_size , num_heads , seqlen_q_rounded } , opts . dtype ( at : : kFloat ) ) ;
2024-07-12 00:53:36 +08:00
at : : Tensor dq_accum ;
at : : Tensor dk_accum , dv_accum ;
2024-08-01 16:57:06 +08:00
dq_accum = torch : : empty ( { batch_size , num_heads , seqlen_q_rounded , head_size_rounded } , opts . dtype ( at : : kFloat ) ) ;
// dk_accum = torch::zeros({batch_size, seqlen_k_rounded, num_heads_k, head_size_rounded}, opts.dtype(at::kFloat));
// dv_accum = torch::zeros({batch_size, seqlen_k_rounded, num_heads_k, head_size_rounded}, opts.dtype(at::kFloat));
2024-07-12 00:53:36 +08:00
at : : Tensor dk_expanded , dv_expanded ;
if ( num_heads_k ! = num_heads ) { // MQA / GQA
dk_expanded = torch : : empty ( { batch_size , seqlen_k , num_heads , head_size } , opts ) ;
dv_expanded = torch : : empty ( { batch_size , seqlen_k , num_heads , head_size } , opts ) ;
} else {
dk_expanded = dk ;
dv_expanded = dv ;
}
Flash_bwd_params params ;
set_params_dgrad ( params ,
batch_size ,
seqlen_q , seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q , k , v , out ,
dout_padded , dq , dk_expanded , dv_expanded ,
nullptr ,
nullptr ,
2024-08-01 16:57:06 +08:00
dq_accum . data_ptr ( ) ,
2024-07-12 00:53:36 +08:00
// loop ? dk_accum.data_ptr() : nullptr,
// loop ? dv_accum.data_ptr() : nullptr,
nullptr ,
nullptr ,
softmax_lse . data_ptr ( ) ,
softmax_d . data_ptr ( ) ,
/*p_dropout=*/ 0.f ,
softmax_scale ,
/*window_size_left=*/ - 1 ,
2024-08-01 16:57:06 +08:00
/*window_size_right=*/ is_causal ? 0 : - 1 ,
deterministic ) ;
params . softmax_lse_log2_ptr = softmax_lse_log2 . data_ptr ( ) ;
2024-07-12 00:53:36 +08:00
2024-08-01 16:57:06 +08:00
// Will be zero'ed out in the backward preprocess kernel
at : : Tensor dq_semaphore = torch : : empty ( { ( seqlen_q + kBlockM - 1 ) / kBlockM , batch_size , num_heads } , opts . dtype ( torch : : kInt32 ) ) ;
2024-07-12 00:53:36 +08:00
params . dq_semaphore = dq_semaphore . data_ptr < int > ( ) ;
// printf("dq_semaphore: %p, [%d, %d, %d]\n", params.dq_semaphore, (seqlen_q + 64 - 1) / 64, batch_size, num_heads);
if ( seqlen_q > 0 ) {
2024-08-01 16:57:06 +08:00
run_mha_bwd ( params , stream ) ;
2024-07-12 00:53:36 +08:00
} else {
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
dk_expanded . zero_ ( ) ;
dv_expanded . zero_ ( ) ;
softmax_d . zero_ ( ) ;
}
2024-08-01 16:57:06 +08:00
// For MQA/GQA we need to sum dK and dV across the groups
if ( num_heads_k ! = num_heads ) {
at : : sum_out ( dk , at : : reshape ( dk_expanded , { batch_size , seqlen_k , num_heads_k , num_heads / num_heads_k , head_size } ) , { 3 } ) ;
at : : sum_out ( dv , at : : reshape ( dv_expanded , { batch_size , seqlen_k , num_heads_k , num_heads / num_heads_k , head_size } ) , { 3 } ) ;
}
if ( head_size_og % 8 ! = 0 ) {
dq = dq . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
dk = dk . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
dv = dv . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
}
return { dq , dk , dv , softmax_d , dq_accum } ;
}
std : : vector < at : : Tensor >
mha_varlen_bwd ( const at : : Tensor & dout , // batch_size x seqlen_q x num_heads, x head_size_og
const at : : Tensor & q , // batch_size x seqlen_q x num_heads x head_size
const at : : Tensor & k , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & v , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & out , // batch_size x seqlen_q x num_heads x head_size
const at : : Tensor & softmax_lse , // b x h x seqlen_q
c10 : : optional < at : : Tensor > & dq_ , // batch_size x seqlen_q x num_heads x head_size
c10 : : optional < at : : Tensor > & dk_ , // batch_size x seqlen_k x num_heads_k x head_size
c10 : : optional < at : : Tensor > & dv_ , // batch_size x seqlen_k x num_heads_k x head_size
const at : : Tensor & cu_seqlens_q , // b+1
const at : : Tensor & cu_seqlens_k , // b+1
const int max_seqlen_q ,
const int max_seqlen_k , // max sequence length to choose the kernel
const float softmax_scale ,
const bool is_causal ,
const bool deterministic ) {
# ifdef FLASHATTENTION_DISABLE_BACKWARD
TORCH_CHECK ( false , " This flash attention build does not support backward. " ) ;
# endif
auto dprops = at : : cuda : : getCurrentDeviceProperties ( ) ;
bool is_sm9x = dprops - > major = = 9 & & dprops - > minor > = 0 ;
TORCH_CHECK ( is_sm9x , " FlashAttentionHopper only supports Hopper GPUs or newer. " ) ;
auto stream = at : : cuda : : getCurrentCUDAStream ( ) . stream ( ) ;
auto q_dtype = q . dtype ( ) ;
TORCH_CHECK ( q_dtype = = torch : : kFloat16 | | q_dtype = = torch : : kBFloat16 ,
" FlashAttention only support fp16 and bf16 data type " ) ;
TORCH_CHECK ( k . dtype ( ) = = q_dtype , " query and key must have the same dtype " ) ;
TORCH_CHECK ( v . dtype ( ) = = q_dtype , " query and value must have the same dtype " ) ;
TORCH_CHECK ( out . dtype ( ) = = q_dtype , " query and out must have the same dtype " ) ;
TORCH_CHECK ( dout . dtype ( ) = = q_dtype , " query and dout must have the same dtype " ) ;
TORCH_CHECK ( cu_seqlens_q . dtype ( ) = = torch : : kInt32 , " cu_seqlens_q must have dtype int32 " ) ;
TORCH_CHECK ( cu_seqlens_k . dtype ( ) = = torch : : kInt32 , " cu_seqlens_k must have dtype int32 " ) ;
CHECK_DEVICE ( q ) ; CHECK_DEVICE ( k ) ; CHECK_DEVICE ( v ) ;
CHECK_DEVICE ( out ) ; CHECK_DEVICE ( dout ) ; CHECK_DEVICE ( softmax_lse ) ;
CHECK_DEVICE ( cu_seqlens_q ) ; CHECK_DEVICE ( cu_seqlens_k ) ;
TORCH_CHECK ( q . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( k . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( v . stride ( - 1 ) = = 1 , " Input tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( out . stride ( - 1 ) = = 1 , " out tensor must have contiguous last dimension " ) ;
TORCH_CHECK ( dout . stride ( - 1 ) = = 1 , " dout tensor must have contiguous last dimension " ) ;
CHECK_CONTIGUOUS ( cu_seqlens_q ) ;
CHECK_CONTIGUOUS ( cu_seqlens_k ) ;
const auto sizes = q . sizes ( ) ;
const int total_q = sizes [ 0 ] ;
const int batch_size = cu_seqlens_q . numel ( ) - 1 ;
const int num_heads = sizes [ 1 ] ;
const int head_size_og = dout . size ( 2 ) ;
const int head_size = sizes [ 2 ] ;
const int total_k = k . size ( 0 ) ;
const int num_heads_k = k . size ( 1 ) ;
TORCH_CHECK ( batch_size > 0 , " batch size must be positive " ) ;
TORCH_CHECK ( head_size % 8 = = 0 , " head_size should be a multiple of 8 " ) ;
TORCH_CHECK ( head_size < = 128 , " FlashAttention backward only supports head dimension at most 128 " ) ;
TORCH_CHECK ( num_heads % num_heads_k = = 0 , " Number of heads in key/value must divide number of heads in query " ) ;
auto round_multiple = [ ] ( int x , int m ) { return ( x + m - 1 ) / m * m ; } ;
const int head_size_rounded = head_size < = 64 ? 64 : round_multiple ( head_size , 32 ) ;
// This should match the kernel configs
const int kBlockM = head_size < = 64 ? 128 : ( head_size < 256 ? 64 : 32 ) ;
const int seqlen_q_rounded = round_multiple ( max_seqlen_q , kBlockM ) ;
const int seqlen_k_rounded = round_multiple ( max_seqlen_k , 128 ) ;
int const total_q_padded_rounded = round_multiple ( total_q + batch_size * 128 , 128 ) ;
TORCH_CHECK ( head_size = = round_multiple ( head_size_og , 8 ) , " head_size must be head_size_og rounded to a multiple of 8 " ) ;
CHECK_SHAPE ( q , total_q , num_heads , head_size_og ) ;
CHECK_SHAPE ( k , total_k , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( v , total_k , num_heads_k , head_size_og ) ;
CHECK_SHAPE ( out , total_q , num_heads , head_size ) ;
CHECK_SHAPE ( dout , total_q , num_heads , head_size_og ) ;
CHECK_SHAPE ( cu_seqlens_q , batch_size + 1 ) ;
CHECK_SHAPE ( cu_seqlens_k , batch_size + 1 ) ;
at : : Tensor dq , dk , dv ;
if ( dq_ . has_value ( ) ) {
dq = dq_ . value ( ) ;
TORCH_CHECK ( dq . dtype ( ) = = q_dtype , " dq must have the same dtype as q " ) ;
CHECK_DEVICE ( dq ) ;
TORCH_CHECK ( dq . stride ( - 1 ) = = 1 , " dq must have contiguous last dimension " ) ;
CHECK_SHAPE ( dq , total_q , num_heads , head_size ) ;
} else {
dq = torch : : empty_like ( q ) ;
}
if ( dk_ . has_value ( ) ) {
dk = dk_ . value ( ) ;
TORCH_CHECK ( dk . dtype ( ) = = q_dtype , " dk must have the same dtype as q " ) ;
CHECK_DEVICE ( dk ) ;
TORCH_CHECK ( dk . stride ( - 1 ) = = 1 , " dk must have contiguous last dimension " ) ;
CHECK_SHAPE ( dk , total_k , num_heads_k , head_size ) ;
} else {
dk = torch : : empty_like ( k ) ;
}
if ( dv_ . has_value ( ) ) {
dv = dv_ . value ( ) ;
TORCH_CHECK ( dv . dtype ( ) = = q_dtype , " dv must have the same dtype as q " ) ;
CHECK_DEVICE ( dv ) ;
TORCH_CHECK ( dv . stride ( - 1 ) = = 1 , " dv must have contiguous last dimension " ) ;
CHECK_SHAPE ( dv , total_k , num_heads_k , head_size ) ;
} else {
dv = torch : : empty_like ( v ) ;
}
at : : Tensor dout_padded ;
if ( head_size_og % 8 ! = 0 ) {
dout_padded = torch : : nn : : functional : : pad ( dout , torch : : nn : : functional : : PadFuncOptions ( { 0 , 8 - head_size_og % 8 } ) ) ;
} else {
dout_padded = dout ;
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at : : cuda : : CUDAGuard device_guard { ( char ) q . get_device ( ) } ;
auto opts = q . options ( ) ;
// Need softmax_d to have total_q_padded_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
auto softmax_d = torch : : empty ( { num_heads , total_q_padded_rounded } , opts . dtype ( at : : kFloat ) ) ;
auto softmax_lse_log2 = torch : : empty ( { num_heads , total_q_padded_rounded } , opts . dtype ( at : : kFloat ) ) ;
at : : Tensor dq_accum ;
at : : Tensor dk_accum , dv_accum ;
dq_accum = torch : : empty ( { num_heads , total_q_padded_rounded , head_size_rounded } , opts . dtype ( at : : kFloat ) ) ;
// dk_accum = torch::zeros({batch_size, seqlen_k_rounded, num_heads_k, head_size_rounded}, opts.dtype(at::kFloat));
// dv_accum = torch::zeros({batch_size, seqlen_k_rounded, num_heads_k, head_size_rounded}, opts.dtype(at::kFloat));
at : : Tensor dk_expanded , dv_expanded ;
if ( num_heads_k ! = num_heads ) { // MQA / GQA
dk_expanded = torch : : empty ( { total_k , num_heads , head_size } , opts ) ;
dv_expanded = torch : : empty ( { total_k , num_heads , head_size } , opts ) ;
} else {
dk_expanded = dk ;
dv_expanded = dv ;
}
Flash_bwd_params params ;
set_params_dgrad ( params ,
batch_size ,
max_seqlen_q , max_seqlen_k ,
seqlen_q_rounded , seqlen_k_rounded ,
num_heads , num_heads_k ,
head_size , head_size_rounded ,
q , k , v , out ,
dout_padded , dq , dk_expanded , dv_expanded ,
cu_seqlens_q . data_ptr ( ) ,
cu_seqlens_k . data_ptr ( ) ,
dq_accum . data_ptr ( ) ,
// loop ? dk_accum.data_ptr() : nullptr,
// loop ? dv_accum.data_ptr() : nullptr,
nullptr ,
nullptr ,
softmax_lse . data_ptr ( ) ,
softmax_d . data_ptr ( ) ,
/*p_dropout=*/ 0.f ,
softmax_scale ,
/*window_size_left=*/ - 1 ,
/*window_size_right=*/ is_causal ? 0 : - 1 ,
deterministic ) ;
params . total_q = total_q ;
params . total_k = total_k ;
params . softmax_lse_log2_ptr = softmax_lse_log2 . data_ptr ( ) ;
// Will be zero'ed out in the backward preprocess kernel
at : : Tensor dq_semaphore = torch : : empty ( { ( max_seqlen_q + kBlockM - 1 ) / kBlockM , batch_size , num_heads } , opts . dtype ( torch : : kInt32 ) ) ;
params . dq_semaphore = dq_semaphore . data_ptr < int > ( ) ;
if ( max_seqlen_q > 0 ) {
run_mha_bwd ( params , stream ) ;
} else {
// If max_seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
dk_expanded . zero_ ( ) ;
dv_expanded . zero_ ( ) ;
softmax_d . zero_ ( ) ;
}
// For MQA/GQA we need to sum dK and dV across the groups
if ( num_heads_k ! = num_heads ) {
at : : sum_out ( dk , at : : reshape ( dk_expanded , { total_k , num_heads_k , num_heads / num_heads_k , head_size } ) , { 2 } ) ;
at : : sum_out ( dv , at : : reshape ( dv_expanded , { total_k , num_heads_k , num_heads / num_heads_k , head_size } ) , { 2 } ) ;
}
2024-07-12 00:53:36 +08:00
if ( head_size_og % 8 ! = 0 ) {
dq = dq . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
dk = dk . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
dv = dv . index ( { " ... " , torch : : indexing : : Slice ( torch : : indexing : : None , head_size_og ) } ) ;
}
2024-08-01 16:57:06 +08:00
return { dq , dk , dv , softmax_d , dq_accum , softmax_lse_log2 } ;
2024-07-12 00:53:36 +08:00
}
PYBIND11_MODULE ( TORCH_EXTENSION_NAME , m ) {
m . doc ( ) = " FlashAttention " ;
m . def ( " fwd " , & mha_fwd , " Forward pass " ) ;
m . def ( " bwd " , & mha_bwd , " Backward pass " ) ;
2024-07-23 12:32:41 +08:00
m . def ( " varlen_fwd " , & mha_varlen_fwd , " Forward pass (variable length) " ) ;
2024-08-01 16:57:06 +08:00
m . def ( " varlen_bwd " , & mha_varlen_bwd , " Varlen backward pass " ) ;
2024-07-12 00:53:36 +08:00
}